Cargando…
Deep convolutional neural networks for image-based Convolvulus sepium detection in sugar beet fields
BACKGROUND: Convolvulus sepium (hedge bindweed) detection in sugar beet fields remains a challenging problem due to variation in appearance of plants, illumination changes, foliage occlusions, and different growth stages under field conditions. Current approaches for weed and crop recognition, segme...
Autores principales: | Gao, Junfeng, French, Andrew P., Pound, Michael P., He, Yong, Pridmore, Tony P., Pieters, Jan G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059384/ https://www.ncbi.nlm.nih.gov/pubmed/32165909 http://dx.doi.org/10.1186/s13007-020-00570-z |
Ejemplares similares
-
A convolutional neural network for fast upsampling of undersampled tomograms in X-ray CT time-series using a representative highly sampled tomogram
por: Bellos, Dimitrios, et al.
Publicado: (2019) -
Convolutional Neural Net-Based Cassava Storage Root Counting Using Real and Synthetic Images
por: Atanbori, John, et al.
Publicado: (2019) -
RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures
por: Yasrab, Robail, et al.
Publicado: (2019) -
Crookes on Beet-Root Sugar
Publicado: (1870) -
Condensed Description of the Manufacture of Beet-Sugar
Publicado: (1922)