Cargando…
Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures
Spiking Neural Networks (SNNs) have recently emerged as a prominent neural computing paradigm. However, the typical shallow SNN architectures have limited capacity for expressing complex representations while training deep SNNs using input spikes has not been successful so far. Diverse methods have...
Autores principales: | Lee, Chankyu, Sarwar, Syed Shakib, Panda, Priyadarshini, Srinivasan, Gopalakrishnan, Roy, Kaushik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059737/ https://www.ncbi.nlm.nih.gov/pubmed/32180697 http://dx.doi.org/10.3389/fnins.2020.00119 |
Ejemplares similares
-
Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning
por: Lee, Chankyu, et al.
Publicado: (2018) -
Synthesizing Images From Spatio-Temporal Representations Using Spike-Based Backpropagation
por: Roy, Deboleena, et al.
Publicado: (2019) -
Training Deep Spiking Neural Networks Using Backpropagation
por: Lee, Jun Haeng, et al.
Publicado: (2016) -
SpiLinC: Spiking Liquid-Ensemble Computing for Unsupervised Speech and Image Recognition
por: Srinivasan, Gopalakrishnan, et al.
Publicado: (2018) -
Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks
por: Wu, Yujie, et al.
Publicado: (2018)