Cargando…
Methane emissions in triple rice cropping: patterns and a method for reduction
The Mekong Delta paddies are known as hotspots of methane emission, but these emissions are not well studied. We analyzed methane emission patterns based on monitoring data from typical triple rice cropping paddies collected over 5 years. We found that the total emissions in a crop season doubled in...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059783/ https://www.ncbi.nlm.nih.gov/pubmed/32185020 http://dx.doi.org/10.12688/f1000research.20046.6 |
Sumario: | The Mekong Delta paddies are known as hotspots of methane emission, but these emissions are not well studied. We analyzed methane emission patterns based on monitoring data from typical triple rice cropping paddies collected over 5 years. We found that the total emissions in a crop season doubled in the second crop, tripled in the third crop, and reset after the annual natural flood of the Mekong River. The emission peaks occurred around 0 to 3 weeks after starting irrigation, then gradually decreased. In general, the main source of emitted methane is rice-derived carbon by current-season photosynthates and the emission peaks at the rice heading stage. However, the contribution of the rice-derived carbon is negligible in the hotspot paddies because total emission is high. The increase in emission levels from the first to the third crop can be explained by the accumulation of rice residue from the preceding crops, especially rice straw incorporated into the soil. The reset of emission levels after the annual flood means that the rice straw is decomposed without methanogenesis in water with dissolved oxygen. Thus, the annual emission pattern shows that avoiding rice straw incorporating into soil and decomposing rice straw in paddy surface-water reduces methane emissions. |
---|