Cargando…
A supervised blood vessel segmentation technique for digital Fundus images using Zernike Moment based features
This paper proposes a new supervised method for blood vessel segmentation using Zernike moment-based shape descriptors. The method implements a pixel wise classification by computing a 11-D feature vector comprising of both statistical (gray-level) features and shape-based (Zernike moment) features....
Autores principales: | Adapa, Dharmateja, Joseph Raj, Alex Noel, Alisetti, Sai Nikhil, Zhuang, Zhemin, K., Ganesan, Naik, Ganesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059933/ https://www.ncbi.nlm.nih.gov/pubmed/32142540 http://dx.doi.org/10.1371/journal.pone.0229831 |
Ejemplares similares
-
Nonlinear Radon Transform Using Zernike Moment for Shape Analysis
por: Ma, Ziping, et al.
Publicado: (2013) -
MTF Measurement by Slanted-Edge Method Based on Improved Zernike Moments
por: Zhang, Shuo, et al.
Publicado: (2023) -
Robust Vessel Segmentation in Fundus Images
por: Budai, A., et al.
Publicado: (2013) -
Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors
por: Bar, Olaf, et al.
Publicado: (2021) -
Semi-supervised segmentation of retinoblastoma tumors in fundus images
por: Rahdar, Amir, et al.
Publicado: (2023)