Cargando…
Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing
Microsupercapacitors (MSCs) have garnered considerable attention as a promising power source for microelectronics and miniaturized portable/wearable devices. However, their practical application has been hindered by the manufacturing complexity and dimensional limits. Here, we develop a new class of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060056/ https://www.ncbi.nlm.nih.gov/pubmed/32181360 http://dx.doi.org/10.1126/sciadv.aaz1692 |
Sumario: | Microsupercapacitors (MSCs) have garnered considerable attention as a promising power source for microelectronics and miniaturized portable/wearable devices. However, their practical application has been hindered by the manufacturing complexity and dimensional limits. Here, we develop a new class of ultrahigh areal number density solid-state MSCs (UHD SS–MSCs) on a chip via electrohydrodynamic (EHD) jet printing. This is, to the best of our knowledge, the first study to exploit EHD jet printing in the MSCs. The activated carbon-based electrode inks are EHD jet-printed, creating interdigitated electrodes with fine feature sizes. Subsequently, a drying-free, ultraviolet-cured solid-state gel electrolyte is introduced to ensure electrochemical isolation between the SS–MSCs, enabling dense SS–MSC integration with on-demand (in-series/in-parallel) cell connection on a chip. The resulting on-chip UHD SS–MSCs exhibit exceptional areal number density [36 unit cells integrated on a chip (area = 8.0 mm × 8.2 mm), 54.9 cells cm(−2)] and areal operating voltage (65.9 V cm(−2)). |
---|