Cargando…
Using global isotopic data to constrain the role of shale gas production in recent increases in atmospheric methane
The accelerated increase in global methane (CH(4)) in the atmosphere, accompanied by a decrease in its (13)C/(12)C isotopic ratio (δ(13)C(CH4)) from −47.1‰ to −47.3‰ observed since 2008, has been attributed to increased emissions from wetlands and cattle, as well as from shale gas and shale oil deve...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060170/ https://www.ncbi.nlm.nih.gov/pubmed/32144290 http://dx.doi.org/10.1038/s41598-020-61035-w |
Sumario: | The accelerated increase in global methane (CH(4)) in the atmosphere, accompanied by a decrease in its (13)C/(12)C isotopic ratio (δ(13)C(CH4)) from −47.1‰ to −47.3‰ observed since 2008, has been attributed to increased emissions from wetlands and cattle, as well as from shale gas and shale oil developments. To date both explanations have relied on poorly constrained δ(13)C(CH4) source signatures. We use a dataset of δ(13)C(CH4) from >1600 produced shale gas samples from regions that account for >97% of global shale gas production to constrain the contribution of shale gas emissions to observed atmospheric increases in the global methane burden. We find that US shale gas extracted since 2008 has volume-weighted-average δ(13)C(CH4) of −39.6‰. The average δ(13)C(CH4) weighted by US basin-level measured emissions in 2015 was −41.8‰. Therefore, emission increases from shale gas would contribute to an opposite atmospheric δ(13)C(CH4) signal in the observed decrease since 2008 (while noting that the global isotopic trend is the net of all dynamic source and sink processes). This observation strongly suggests that changing emissions of other (isotopically-lighter) CH(4) source terms is dominating the increase in global CH(4) emissions. Although production of shale gas has increased rapidly since 2008, and CH(4) emissions associated with this increased production are expected to have increased overall in that timeframe, the simultaneously-observed increase in global atmospheric CH(4) is not dominated by emissions from shale gas and shale oil developments. |
---|