Cargando…
Digestibility, textural and sensory characteristics of cookies made from residues of enzyme-assisted aqueous extraction of soybeans
Enzyme-assisted aqueous extraction residue (REAE) has a lower utilization rate as it is the “waste” produced after the enzyme-assisted aqueous extraction (EAE), but its nutritional value is high. To improve the development and utilization of REAE, in this study, cookies were made by adding REAE (0%,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060251/ https://www.ncbi.nlm.nih.gov/pubmed/32144389 http://dx.doi.org/10.1038/s41598-020-61179-9 |
Sumario: | Enzyme-assisted aqueous extraction residue (REAE) has a lower utilization rate as it is the “waste” produced after the enzyme-assisted aqueous extraction (EAE), but its nutritional value is high. To improve the development and utilization of REAE, in this study, cookies were made by adding REAE (0%, 10%, 20%, 30%, 40%, 50%) as a food additive to a small amount of flour. The AOAC method was used to identify the basic components of REAE, analyze its physical and chemical properties, and characterize the cookie structure change in terms of texture, disulfide bond, and thiol content. An in vitro simulation system and sensory evaluation mechanism were established to analyze the bioavailability and impact of quality. The results show that REAE is a potential food additive. With an increase in the REAE content, the cookies become lighter in color, the sweetness and fat content are reduced, the hardness is increased, and the digestibility and glycerin index are reduced. The change in texture is caused by the reduction of disulfide bonds in the dough. The cookies were ‘well accepted’ with up to 30% REAE. Therefore, the use of the appropriate amount of REAE as a new food additive will reduce the amount of starch added. |
---|