Cargando…
Pathway-specific enzymes from bamboo and crop leaves biosynthesize anti-nociceptive C-glycosylated flavones
C-glycosylated flavones (CGFs) are promising candidates as anti-nociceptive compounds. The leaves of bamboo and related crops in the grass family are a largely unexploited bioresource with a wide array of CGFs. We report here pathway-specific enzymes including C-glycosyltransferases (CGTs) and P450...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060329/ https://www.ncbi.nlm.nih.gov/pubmed/32144397 http://dx.doi.org/10.1038/s42003-020-0834-3 |
Sumario: | C-glycosylated flavones (CGFs) are promising candidates as anti-nociceptive compounds. The leaves of bamboo and related crops in the grass family are a largely unexploited bioresource with a wide array of CGFs. We report here pathway-specific enzymes including C-glycosyltransferases (CGTs) and P450 hydroxylases from cereal crops and bamboo species accumulating abundant CGFs. Mining of CGTs and engineering of P450s that decorate the flavonoid skeleton allowed the production of desired CGFs (with yield of 20–40 mg/L) in an Escherichia coli cell factory. We further explored the antinociceptive activity of major CGFs in mice models and identified isoorientin as the most potent, with both neuroanalgesic and anti-inflammatory effects superior to clinical drugs such as rotundine and aspirin. Our discovery of the pain-alleviating flavonoids elicited from bamboo and crop leaves establishes this previously underutilized source, and sheds light on the pathway and pharmacological mechanisms of the compounds. |
---|