Cargando…

Radiomics prognostication model in glioblastoma using diffusion- and perfusion-weighted MRI

We aimed to develop and validate a multiparametric MR radiomics model using conventional, diffusion-, and perfusion-weighted MR imaging for better prognostication in patients with newly diagnosed glioblastoma. A total of 216 patients with newly diagnosed glioblastoma were enrolled from two tertiary...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Ji Eun, Kim, Ho Sung, Jo, Youngheun, Yoo, Roh-Eul, Choi, Seung Hong, Nam, Soo Jung, Kim, Jeong Hoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060336/
https://www.ncbi.nlm.nih.gov/pubmed/32144360
http://dx.doi.org/10.1038/s41598-020-61178-w
Descripción
Sumario:We aimed to develop and validate a multiparametric MR radiomics model using conventional, diffusion-, and perfusion-weighted MR imaging for better prognostication in patients with newly diagnosed glioblastoma. A total of 216 patients with newly diagnosed glioblastoma were enrolled from two tertiary medical centers and divided into training (n = 158) and external validation sets (n = 58). Radiomic features were extracted from contrast-enhanced T1-weighted imaging, fluid-attenuated inversion recovery, diffusion-weighted imaging, and dynamic susceptibility contrast imaging. After radiomic feature selection using LASSO regression, an individualized radiomic score was calculated. A multiparametric MR prognostic model was built using the radiomic score and clinical predictors. The results showed that the multiparametric MR prognostic model (radiomics score + clinical predictors) exhibited good discrimination (C-index, 0.74) and performed better than a conventional MR radiomics model (C-index, 0.65, P < 0.0001) or clinical predictors (C-index, 0.66; P < 0.0001). The multiparametric MR prognostic model also showed robustness in external validation (C-index, 0.70). Our results indicate that the incorporation of diffusion- and perfusion-weighted MR imaging into an MR radiomics model to improve prognostication in glioblastoma patients improved its performance over that achievable using clinical predictors alone.