Cargando…
Radiomics prognostication model in glioblastoma using diffusion- and perfusion-weighted MRI
We aimed to develop and validate a multiparametric MR radiomics model using conventional, diffusion-, and perfusion-weighted MR imaging for better prognostication in patients with newly diagnosed glioblastoma. A total of 216 patients with newly diagnosed glioblastoma were enrolled from two tertiary...
Autores principales: | Park, Ji Eun, Kim, Ho Sung, Jo, Youngheun, Yoo, Roh-Eul, Choi, Seung Hong, Nam, Soo Jung, Kim, Jeong Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060336/ https://www.ncbi.nlm.nih.gov/pubmed/32144360 http://dx.doi.org/10.1038/s41598-020-61178-w |
Ejemplares similares
-
Prediction of Prognosis in Glioblastoma Using Radiomics Features of Dynamic Contrast-Enhanced MRI
por: Pak, Elena, et al.
Publicado: (2021) -
Prognostic Prediction Based on Dynamic Contrast-Enhanced MRI and Dynamic Susceptibility Contrast-Enhanced MRI Parameters from Non-Enhancing, T2-High-Signal-Intensity Lesions in Patients with Glioblastoma
por: Jo, Sang Won, et al.
Publicado: (2021) -
Diffusion Weighted/Tensor Imaging, Functional MRI and Perfusion Weighted Imaging in Glioblastoma—Foundations and Future
por: Salama, Gayle R., et al.
Publicado: (2018) -
Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI
por: Shim, Ka Young, et al.
Publicado: (2021) -
Joint approach of diffusion- and perfusion-weighted MRI in intra-axial mass like lesions in clinical practice simulation
por: Yoon, Ra Gyoung, et al.
Publicado: (2018)