Cargando…

The lateral prefrontal cortex of primates encodes stimulus colors and their behavioral relevance during a match-to-sample task

The lateral prefrontal cortex of primates (lPFC) plays a central role in complex cognitive behavior, in decision-making as well as in guiding top-down attention. However, how and where in lPFC such behaviorally relevant signals are computed is poorly understood. We analyzed neural recordings from ch...

Descripción completa

Detalles Bibliográficos
Autores principales: Schwedhelm, Philipp, Baldauf, Daniel, Treue, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060344/
https://www.ncbi.nlm.nih.gov/pubmed/32144331
http://dx.doi.org/10.1038/s41598-020-61171-3
Descripción
Sumario:The lateral prefrontal cortex of primates (lPFC) plays a central role in complex cognitive behavior, in decision-making as well as in guiding top-down attention. However, how and where in lPFC such behaviorally relevant signals are computed is poorly understood. We analyzed neural recordings from chronic microelectrode arrays implanted in lPFC region 8Av/45 of two rhesus macaques. The animals performed a feature match-to-sample task requiring them to match both motion and color information in a test stimulus. This task allowed to separate the encoding of stimulus motion and color from their current behavioral relevance on a trial-by-trial basis. We found that upcoming motor behavior can be robustly predicted from lPFC activity. In addition, we show that 8Av/45 encodes the color of a visual stimulus, regardless of its behavioral relevance. Most notably, whether a color matches the searched-for color can be decoded independent of a trial’s motor outcome and while subjects detect unique feature conjunctions of color and motion. Thus, macaque area 8Av/45 computes, among other task-relevant information, the behavioral relevance of visual color features. Such a signal is most critical for both the selection of responses as well as the deployment of top-down modulatory signals, like feature-based attention.