Cargando…
Deep Neural Network with Joint Distribution Matching for Cross-Subject Motor Imagery Brain-Computer Interfaces
Motor imagery brain-computer interfaces (BCIs) have demonstrated great potential and attract world-spread attentions. Due to the nonstationary character of the motor imagery signals, costly and boring calibration sessions must be proceeded before use. This prevents them from going into our realistic...
Autores principales: | Zhao, Xianghong, Zhao, Jieyu, Liu, Cong, Cai, Weiming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060420/ https://www.ncbi.nlm.nih.gov/pubmed/32185216 http://dx.doi.org/10.1155/2020/7285057 |
Ejemplares similares
-
Deep Learning Based Inter-subject Continuous Decoding of Motor Imagery for Practical Brain-Computer Interfaces
por: Roy, Sujit, et al.
Publicado: (2020) -
Motor Imagery Classification for Brain Computer Interface Using Deep Convolutional Neural Networks and Mixup Augmentation
Publicado: (2022) -
Discriminating three motor imagery states of the same joint for brain-computer interface
por: Guan, Shan, et al.
Publicado: (2021) -
Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects
por: Mokienko, Olesya A., et al.
Publicado: (2013) -
On the Deep Learning Models for EEG-Based Brain-Computer Interface Using Motor Imagery
por: Zhu, Hao, et al.
Publicado: (2022)