Cargando…
Specific chromatin landscapes and transcription factors couple breast cancer subtype with metastatic relapse to lung or brain
BACKGROUND: Few somatic mutations have been linked to breast cancer metastasis, whereas transcriptomic differences among primary tumors correlate with incidence of metastasis, especially to the lungs and brain. However, the epigenomic alterations and transcription factors (TFs) which underlie these...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060551/ https://www.ncbi.nlm.nih.gov/pubmed/32143622 http://dx.doi.org/10.1186/s12920-020-0695-0 |
_version_ | 1783504254966693888 |
---|---|
author | Cai, Wesley L. Greer, Celeste B. Chen, Jocelyn F. Arnal-Estapé, Anna Cao, Jian Yan, Qin Nguyen, Don X. |
author_facet | Cai, Wesley L. Greer, Celeste B. Chen, Jocelyn F. Arnal-Estapé, Anna Cao, Jian Yan, Qin Nguyen, Don X. |
author_sort | Cai, Wesley L. |
collection | PubMed |
description | BACKGROUND: Few somatic mutations have been linked to breast cancer metastasis, whereas transcriptomic differences among primary tumors correlate with incidence of metastasis, especially to the lungs and brain. However, the epigenomic alterations and transcription factors (TFs) which underlie these alterations remain unclear. METHODS: To identify these, we performed RNA-seq, Chromatin Immunoprecipitation and sequencing (ChIP-seq) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) of the MDA-MB-231 cell line and its brain (BrM2) and lung (LM2) metastatic sub-populations. We incorporated ATAC-seq data from TCGA to assess metastatic open chromatin signatures, and gene expression data from human metastatic datasets to nominate transcription factor biomarkers. RESULTS: Our integrated epigenomic analyses found that lung and brain metastatic cells exhibit both shared and distinctive signatures of active chromatin. Notably, metastatic sub-populations exhibit increased activation of both promoters and enhancers. We also integrated these data with chromosome conformation capture coupled with ChIP-seq (HiChIP) derived enhancer-promoter interactions to predict enhancer-controlled pathway alterations. We found that enhancer changes are associated with endothelial cell migration in LM2, and negative regulation of epithelial cell proliferation in BrM2. Promoter changes are associated with vasculature development in LM2 and homophilic cell adhesion in BrM2. Using ATAC-seq, we identified a metastasis open-chromatin signature that is elevated in basal-like and HER2-enriched breast cancer subtypes and associates with worse prognosis in human samples. We further uncovered TFs associated with the open chromatin landscapes of metastatic cells and whose expression correlates with risk for metastasis. While some of these TFs are associated with primary breast tumor subtypes, others more specifically correlate with lung or brain metastasis. CONCLUSIONS: We identify distinctive epigenomic properties of breast cancer cells that metastasize to the lung and brain. We also demonstrate that signatures of active chromatin sites are partially linked to human breast cancer subtypes with poor prognosis, and that specific TFs can independently distinguish lung and brain relapse. |
format | Online Article Text |
id | pubmed-7060551 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-70605512020-03-12 Specific chromatin landscapes and transcription factors couple breast cancer subtype with metastatic relapse to lung or brain Cai, Wesley L. Greer, Celeste B. Chen, Jocelyn F. Arnal-Estapé, Anna Cao, Jian Yan, Qin Nguyen, Don X. BMC Med Genomics Research Article BACKGROUND: Few somatic mutations have been linked to breast cancer metastasis, whereas transcriptomic differences among primary tumors correlate with incidence of metastasis, especially to the lungs and brain. However, the epigenomic alterations and transcription factors (TFs) which underlie these alterations remain unclear. METHODS: To identify these, we performed RNA-seq, Chromatin Immunoprecipitation and sequencing (ChIP-seq) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) of the MDA-MB-231 cell line and its brain (BrM2) and lung (LM2) metastatic sub-populations. We incorporated ATAC-seq data from TCGA to assess metastatic open chromatin signatures, and gene expression data from human metastatic datasets to nominate transcription factor biomarkers. RESULTS: Our integrated epigenomic analyses found that lung and brain metastatic cells exhibit both shared and distinctive signatures of active chromatin. Notably, metastatic sub-populations exhibit increased activation of both promoters and enhancers. We also integrated these data with chromosome conformation capture coupled with ChIP-seq (HiChIP) derived enhancer-promoter interactions to predict enhancer-controlled pathway alterations. We found that enhancer changes are associated with endothelial cell migration in LM2, and negative regulation of epithelial cell proliferation in BrM2. Promoter changes are associated with vasculature development in LM2 and homophilic cell adhesion in BrM2. Using ATAC-seq, we identified a metastasis open-chromatin signature that is elevated in basal-like and HER2-enriched breast cancer subtypes and associates with worse prognosis in human samples. We further uncovered TFs associated with the open chromatin landscapes of metastatic cells and whose expression correlates with risk for metastasis. While some of these TFs are associated with primary breast tumor subtypes, others more specifically correlate with lung or brain metastasis. CONCLUSIONS: We identify distinctive epigenomic properties of breast cancer cells that metastasize to the lung and brain. We also demonstrate that signatures of active chromatin sites are partially linked to human breast cancer subtypes with poor prognosis, and that specific TFs can independently distinguish lung and brain relapse. BioMed Central 2020-03-06 /pmc/articles/PMC7060551/ /pubmed/32143622 http://dx.doi.org/10.1186/s12920-020-0695-0 Text en © The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Cai, Wesley L. Greer, Celeste B. Chen, Jocelyn F. Arnal-Estapé, Anna Cao, Jian Yan, Qin Nguyen, Don X. Specific chromatin landscapes and transcription factors couple breast cancer subtype with metastatic relapse to lung or brain |
title | Specific chromatin landscapes and transcription factors couple breast cancer subtype with metastatic relapse to lung or brain |
title_full | Specific chromatin landscapes and transcription factors couple breast cancer subtype with metastatic relapse to lung or brain |
title_fullStr | Specific chromatin landscapes and transcription factors couple breast cancer subtype with metastatic relapse to lung or brain |
title_full_unstemmed | Specific chromatin landscapes and transcription factors couple breast cancer subtype with metastatic relapse to lung or brain |
title_short | Specific chromatin landscapes and transcription factors couple breast cancer subtype with metastatic relapse to lung or brain |
title_sort | specific chromatin landscapes and transcription factors couple breast cancer subtype with metastatic relapse to lung or brain |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060551/ https://www.ncbi.nlm.nih.gov/pubmed/32143622 http://dx.doi.org/10.1186/s12920-020-0695-0 |
work_keys_str_mv | AT caiwesleyl specificchromatinlandscapesandtranscriptionfactorscouplebreastcancersubtypewithmetastaticrelapsetolungorbrain AT greercelesteb specificchromatinlandscapesandtranscriptionfactorscouplebreastcancersubtypewithmetastaticrelapsetolungorbrain AT chenjocelynf specificchromatinlandscapesandtranscriptionfactorscouplebreastcancersubtypewithmetastaticrelapsetolungorbrain AT arnalestapeanna specificchromatinlandscapesandtranscriptionfactorscouplebreastcancersubtypewithmetastaticrelapsetolungorbrain AT caojian specificchromatinlandscapesandtranscriptionfactorscouplebreastcancersubtypewithmetastaticrelapsetolungorbrain AT yanqin specificchromatinlandscapesandtranscriptionfactorscouplebreastcancersubtypewithmetastaticrelapsetolungorbrain AT nguyendonx specificchromatinlandscapesandtranscriptionfactorscouplebreastcancersubtypewithmetastaticrelapsetolungorbrain |