Cargando…
Fully Automated, Quality-Controlled Cardiac Analysis From CMR: Validation and Large-Scale Application to Characterize Cardiac Function
OBJECTIVES: This study sought to develop a fully automated framework for cardiac function analysis from cardiac magnetic resonance (CMR), including comprehensive quality control (QC) algorithms to detect erroneous output. BACKGROUND: Analysis of cine CMR imaging using deep learning (DL) algorithms c...
Autores principales: | Ruijsink, Bram, Puyol-Antón, Esther, Oksuz, Ilkay, Sinclair, Matthew, Bai, Wenjia, Schnabel, Julia A., Razavi, Reza, King, Andrew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060799/ https://www.ncbi.nlm.nih.gov/pubmed/31326477 http://dx.doi.org/10.1016/j.jcmg.2019.05.030 |
Ejemplares similares
-
Deep Learning for Classification and Selection of Cine CMR Images to Achieve Fully Automated Quality-Controlled CMR Analysis From Scanner to Report
por: Vergani, Vittoria, et al.
Publicado: (2021) -
An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases
por: Mariscal-Harana, Jorge, et al.
Publicado: (2023) -
Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning
por: Oksuz, Ilkay, et al.
Publicado: (2019) -
Automated quantification of myocardial tissue characteristics from native T(1) mapping using neural networks with uncertainty-based quality-control
por: Puyol-Antón, Esther, et al.
Publicado: (2020) -
Aortic Distensibility Measured by Automated Analysis of Magnetic Resonance Imaging Predicts Adverse Cardiovascular Events in UK Biobank
por: Cecelja, Marina, et al.
Publicado: (2022)