Cargando…
Origin of the Electron–Phonon Interaction of Topological Semimetal Surfaces Measured with Helium Atom Scattering
[Image: see text] He atom scattering has been demonstrated to be a sensitive probe of the electron–phonon interaction parameter λ at metal and metal-overlayer surfaces. Here it is shown that the theory linking λ to the thermal attenuation of atom scattering spectra (the Debye–Waller factor) can be a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061329/ https://www.ncbi.nlm.nih.gov/pubmed/32032492 http://dx.doi.org/10.1021/acs.jpclett.9b03829 |
Sumario: | [Image: see text] He atom scattering has been demonstrated to be a sensitive probe of the electron–phonon interaction parameter λ at metal and metal-overlayer surfaces. Here it is shown that the theory linking λ to the thermal attenuation of atom scattering spectra (the Debye–Waller factor) can be applied to topological semimetal surfaces, such as the quasi-one-dimensional charge-density-wave system Bi(114) and the layered pnictogen chalcogenides. The electron−phonon coupling, as determined for several topological insulators belonging to the class of bismuth chalcogenides, suggests a dominant contribution of the surface quantum well states over the Dirac electrons in terms of λ. |
---|