Cargando…
Strong Plasmon Enhancement of the Saturation Photon Count Rate of Single Molecules
[Image: see text] Plasmon resonances have appeared as a promising method to boost the fluorescence intensity of single emitters. However, because research has focused on the enhancement at low excitation intensity, little is known about plasmon–fluorophore coupling near the point where the dye satur...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061331/ https://www.ncbi.nlm.nih.gov/pubmed/32073865 http://dx.doi.org/10.1021/acs.jpclett.0c00155 |
_version_ | 1783504372577075200 |
---|---|
author | Wang, Yuyang Horáček, Matěj Zijlstra, Peter |
author_facet | Wang, Yuyang Horáček, Matěj Zijlstra, Peter |
author_sort | Wang, Yuyang |
collection | PubMed |
description | [Image: see text] Plasmon resonances have appeared as a promising method to boost the fluorescence intensity of single emitters. However, because research has focused on the enhancement at low excitation intensity, little is known about plasmon–fluorophore coupling near the point where the dye saturates. Here we study plasmon-enhanced fluorescence at a broad range of excitation intensities up to saturation. We adopt a novel DNA-mediated approach wherein dynamic single-molecule binding provides a controlled particle–fluorophore spacing, and dynamic rebinding circumvents artifacts due to photobleaching. We find that near saturation the maximum photon count rate is enhanced by more than 2 orders of magnitude at the optimal particle–fluorophore spacing, even for a dye with a high intrinsic quantum yield. We compare our results to a numerical model taking into account dye saturation. These experiments provide design rules to maximize the photon output of single emitters, which will open the door to studying fast dynamics in real time using single-molecule fluorescence. |
format | Online Article Text |
id | pubmed-7061331 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-70613312020-03-12 Strong Plasmon Enhancement of the Saturation Photon Count Rate of Single Molecules Wang, Yuyang Horáček, Matěj Zijlstra, Peter J Phys Chem Lett [Image: see text] Plasmon resonances have appeared as a promising method to boost the fluorescence intensity of single emitters. However, because research has focused on the enhancement at low excitation intensity, little is known about plasmon–fluorophore coupling near the point where the dye saturates. Here we study plasmon-enhanced fluorescence at a broad range of excitation intensities up to saturation. We adopt a novel DNA-mediated approach wherein dynamic single-molecule binding provides a controlled particle–fluorophore spacing, and dynamic rebinding circumvents artifacts due to photobleaching. We find that near saturation the maximum photon count rate is enhanced by more than 2 orders of magnitude at the optimal particle–fluorophore spacing, even for a dye with a high intrinsic quantum yield. We compare our results to a numerical model taking into account dye saturation. These experiments provide design rules to maximize the photon output of single emitters, which will open the door to studying fast dynamics in real time using single-molecule fluorescence. American Chemical Society 2020-02-19 2020-03-05 /pmc/articles/PMC7061331/ /pubmed/32073865 http://dx.doi.org/10.1021/acs.jpclett.0c00155 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Wang, Yuyang Horáček, Matěj Zijlstra, Peter Strong Plasmon Enhancement of the Saturation Photon Count Rate of Single Molecules |
title | Strong Plasmon Enhancement of the Saturation Photon
Count Rate of Single Molecules |
title_full | Strong Plasmon Enhancement of the Saturation Photon
Count Rate of Single Molecules |
title_fullStr | Strong Plasmon Enhancement of the Saturation Photon
Count Rate of Single Molecules |
title_full_unstemmed | Strong Plasmon Enhancement of the Saturation Photon
Count Rate of Single Molecules |
title_short | Strong Plasmon Enhancement of the Saturation Photon
Count Rate of Single Molecules |
title_sort | strong plasmon enhancement of the saturation photon
count rate of single molecules |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061331/ https://www.ncbi.nlm.nih.gov/pubmed/32073865 http://dx.doi.org/10.1021/acs.jpclett.0c00155 |
work_keys_str_mv | AT wangyuyang strongplasmonenhancementofthesaturationphotoncountrateofsinglemolecules AT horacekmatej strongplasmonenhancementofthesaturationphotoncountrateofsinglemolecules AT zijlstrapeter strongplasmonenhancementofthesaturationphotoncountrateofsinglemolecules |