Cargando…

Bacteria-laden microgels as autonomous three-dimensional environments for stem cell engineering

A one-step microfluidic system is developed in this study which enables the encapsulation of stem cells and genetically engineered non-pathogenic bacteria into a so-called three-dimensional (3D) pearl lace–like microgel of alginate with high level of monodispersity and cell viability. The alginate-b...

Descripción completa

Detalles Bibliográficos
Autores principales: Witte, K., Rodrigo-Navarro, A., Salmeron-Sanchez, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061548/
https://www.ncbi.nlm.nih.gov/pubmed/32159146
http://dx.doi.org/10.1016/j.mtbio.2019.100011
Descripción
Sumario:A one-step microfluidic system is developed in this study which enables the encapsulation of stem cells and genetically engineered non-pathogenic bacteria into a so-called three-dimensional (3D) pearl lace–like microgel of alginate with high level of monodispersity and cell viability. The alginate-based microgel constitutes living materials that control stem cell differentiation in either an autonomous or heteronomous manner. The bacteria (Lactococcus lactis) encapsulated within the construct surface display adhesion fragments (III(7-10) fragment of human fibronectin) for integrin binding while secreting growth factors (recombinant human bone morphogenetic protein-2) to induce osteogenic differentiation of human bone marrow–derived mesenchymal stem cells. We concentrate on interlinked pearl lace microgels that enabled us to prototype a low-cost 3D bioprinting platform with highly tunable properties.