Cargando…
Constraining classifiers in molecular analysis: invariance and robustness
Analysing molecular profiles requires the selection of classification models that can cope with the high dimensionality and variability of these data. Also, improper reference point choice and scaling pose additional challenges. Often model selection is somewhat guided by ad hoc simulations rather t...
Autores principales: | Lausser, Ludwig, Szekely, Robin, Klimmek, Attila, Schmid, Florian, Kestler, Hans A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061712/ https://www.ncbi.nlm.nih.gov/pubmed/32019472 http://dx.doi.org/10.1098/rsif.2019.0612 |
Ejemplares similares
-
Classifying organisms and artefacts by their outline shapes
por: Salili-James, Arianna, et al.
Publicado: (2022) -
Constrained optimization of divisional load in hierarchically organized tissues during homeostasis
por: Ashcroft, Peter, et al.
Publicado: (2022) -
Assessing phenotype order in molecular data
por: Lausser, Ludwig, et al.
Publicado: (2019) -
Efficient cross-validation traversals in feature subset selection
por: Lausser, Ludwig, et al.
Publicado: (2022) -
Who is calling? Optimizing source identification from marmoset vocalizations with hierarchical machine learning classifiers
por: Phaniraj, Nikhil, et al.
Publicado: (2023)