Cargando…
Fluid–structure interaction simulations outperform computational fluid dynamics in the description of thoracic aorta haemodynamics and in the differentiation of progressive dilation in Marfan syndrome patients
Abnormal fluid dynamics at the ascending aorta may be at the origin of aortic aneurysms. This study was aimed at comparing the performance of computational fluid dynamics (CFD) and fluid–structure interaction (FSI) simulations against four-dimensional (4D) flow magnetic resonance imaging (MRI) data;...
Autores principales: | Pons, R., Guala, A., Rodríguez-Palomares, J. F., Cajas, J. C., Dux-Santoy, L., Teixidó-Tura, G., Molins, J. J., Vázquez, M., Evangelista, A., Martorell, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062053/ https://www.ncbi.nlm.nih.gov/pubmed/32257331 http://dx.doi.org/10.1098/rsos.191752 |
Ejemplares similares
-
Decreased rotational flow and circumferential wall shear stress as early markers of descending aorta dilation in Marfan syndrome: a 4D flow CMR study
por: Guala, A., et al.
Publicado: (2019) -
Application of Video-to-Video Translation Networks to Computational Fluid Dynamics
por: Kigure, Hiromitsu
Publicado: (2021) -
Aortic flow patterns and wall shear stress maps by 4D-flow cardiovascular magnetic resonance in the assessment of aortic dilatation in bicuspid aortic valve disease
por: Rodríguez-Palomares, José Fernando, et al.
Publicado: (2018) -
Integrated Evolutionary Learning: An Artificial Intelligence Approach to Joint Learning of Features and Hyperparameters for Optimized, Explainable Machine Learning
por: de Lacy, Nina, et al.
Publicado: (2022) -
The Generative Adversarial Brain
por: Gershman, Samuel J.
Publicado: (2019)