Cargando…
Secular Seasonality and Trend Forecasting of Tuberculosis Incidence Rate in China Using the Advanced Error-Trend-Seasonal Framework
OBJECTIVE: Tuberculosis (TB) is a major public health problem in China, and contriving a long-term forecast is a useful aid for better launching prevention initiatives. Regrettably, such a forecasting method with robust and accurate performance is still lacking. Here, we aim to investigate its poten...
Autores principales: | Wang, Yongbin, Xu, Chunjie, Ren, Jingchao, Wu, Weidong, Zhao, Xiangmei, Chao, Ling, Liang, Wenjuan, Yao, Sanqiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062399/ https://www.ncbi.nlm.nih.gov/pubmed/32184635 http://dx.doi.org/10.2147/IDR.S238225 |
Ejemplares similares
-
An Advanced Data-Driven Hybrid Model of SARIMA-NNNAR for Tuberculosis Incidence Time Series Forecasting in Qinghai Province, China
por: Wang, Yongbin, et al.
Publicado: (2020) -
Time series analysis of temporal trends in hemorrhagic fever with renal syndrome morbidity rate in China from 2005 to 2019
por: Wang, Yongbin, et al.
Publicado: (2020) -
Forecasting the epidemiological trends of COVID-19 prevalence and mortality using the advanced α-Sutte Indicator
por: Wang, Yongbin, et al.
Publicado: (2020) -
Forecasting of Milk Production in Northern Thailand Using Seasonal Autoregressive Integrated Moving Average, Error Trend Seasonality, and Hybrid Models
por: Punyapornwithaya, Veerasak, et al.
Publicado: (2021) -
Time series decomposition into dyslipidemia prevalence among urban Chinese population: secular and seasonal trends
por: Lao, Jiahui, et al.
Publicado: (2021)