Cargando…
The transcription factor NFAT5 limits infection-induced type I interferon responses
Type I interferon (IFN-I) provides effective antiviral immunity but can exacerbate harmful inflammatory reactions and cause hematopoietic stem cell (HSC) exhaustion; therefore, IFN-I expression must be tightly controlled. While signaling mechanisms that limit IFN-I induction and function have been e...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062515/ https://www.ncbi.nlm.nih.gov/pubmed/31816635 http://dx.doi.org/10.1084/jem.20190449 |
Sumario: | Type I interferon (IFN-I) provides effective antiviral immunity but can exacerbate harmful inflammatory reactions and cause hematopoietic stem cell (HSC) exhaustion; therefore, IFN-I expression must be tightly controlled. While signaling mechanisms that limit IFN-I induction and function have been extensively studied, less is known about transcriptional repressors acting directly on IFN-I regulatory regions. We show that NFAT5, an activator of macrophage pro-inflammatory responses, represses Toll-like receptor 3 and virus-induced expression of IFN-I in macrophages and dendritic cells. Mice lacking NFAT5 exhibit increased IFN-I production and better control of viral burden upon LCMV infection but show exacerbated HSC activation under systemic poly(I:C)-induced inflammation. We identify IFNβ as a primary target repressed by NFAT5, which opposes the master IFN-I inducer IRF3 by binding to an evolutionarily conserved sequence in the IFNB1 enhanceosome that overlaps a key IRF site. These findings illustrate how IFN-I responses are balanced by simultaneously opposing transcription factors. |
---|