Cargando…
Applying deep learning to single-trial EEG data provides evidence for complementary theories on action control
Efficient action control is indispensable for goal-directed behaviour. Different theories have stressed the importance of either attention or response selection sub-processes for action control. Yet, it is unclear to what extent these processes can be identified in the dynamics of neurophysiological...
Autores principales: | Vahid, Amirali, Mückschel, Moritz, Stober, Sebastian, Stock, Ann-Kathrin, Beste, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062698/ https://www.ncbi.nlm.nih.gov/pubmed/32152375 http://dx.doi.org/10.1038/s42003-020-0846-z |
Ejemplares similares
-
Conditional generative adversarial networks applied to EEG data can inform about the inter-relation of antagonistic behaviors on a neural level
por: Vahid, Amirali, et al.
Publicado: (2022) -
Machine learning provides novel neurophysiological features that predict performance to inhibit automated responses
por: Vahid, Amirali, et al.
Publicado: (2018) -
Different strategies, but indifferent strategy adaptation during action cascading
por: Mückschel, Moritz, et al.
Publicado: (2015) -
Deep Learning Based on Event-Related EEG Differentiates Children with ADHD from Healthy Controls
por: Vahid, Amirali, et al.
Publicado: (2019) -
Connecting EEG signal decomposition and response selection processes using the theory of event coding framework
por: Takacs, Adam, et al.
Publicado: (2020)