Cargando…
An empirical comparison of neural networks and machine learning algorithms for EEG gait decoding
Previous studies of Brain Computer Interfaces (BCI) based on scalp electroencephalography (EEG) have demonstrated the feasibility of decoding kinematics for lower limb movements during walking. In this computational study, we investigated offline decoding analysis with different models and condition...
Autores principales: | Nakagome, Sho, Luu, Trieu Phat, He, Yongtian, Ravindran, Akshay Sujatha, Contreras-Vidal, Jose L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062700/ https://www.ncbi.nlm.nih.gov/pubmed/32152333 http://dx.doi.org/10.1038/s41598-020-60932-4 |
Ejemplares similares
-
Real-time EEG-based brain-computer interface to a virtual avatar enhances cortical involvement in human treadmill walking
por: Luu, Trieu Phat, et al.
Publicado: (2017) -
Multi-Trial Gait Adaptation of Healthy Individuals during Visual Kinematic Perturbations
por: Luu, Trieu Phat, et al.
Publicado: (2017) -
A mobile brain-body imaging dataset recorded during treadmill walking with a brain-computer interface
por: He, Yongtian, et al.
Publicado: (2018) -
An empirical comparison of deep learning explainability approaches for EEG using simulated ground truth
por: Sujatha Ravindran, Akshay, et al.
Publicado: (2023) -
Electrocortical correlates of human level-ground, slope, and stair walking
por: Luu, Trieu Phat, et al.
Publicado: (2017)