Cargando…
Learning to synthesize: robust phase retrieval at low photon counts
The quality of inverse problem solutions obtained through deep learning is limited by the nature of the priors learned from examples presented during the training phase. Particularly in the case of quantitative phase retrieval, spatial frequencies that are underrepresented in the training database,...
Autores principales: | Deng, Mo, Li, Shuai, Goy, Alexandre, Kang, Iksung, Barbastathis, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062747/ https://www.ncbi.nlm.nih.gov/pubmed/32194950 http://dx.doi.org/10.1038/s41377-020-0267-2 |
Ejemplares similares
-
Dynamical machine learning volumetric reconstruction of objects’ interiors from limited angular views
por: Kang, Iksung, et al.
Publicado: (2021) -
Correction: Dynamical machine learning volumetric reconstruction of objects’ interiors from limited angular views
por: Kang, Iksung, et al.
Publicado: (2021) -
High-resolution limited-angle phase tomography of dense layered objects using deep neural networks
por: Goy, Alexandre, et al.
Publicado: (2019) -
Attentional Ptycho-Tomography (APT) for three-dimensional nanoscale X-ray imaging with minimal data acquisition and computation time
por: Kang, Iksung, et al.
Publicado: (2023) -
Jitter-Robust Phase Retrieval Wavefront Sensing Algorithms
por: Guo, Liang, et al.
Publicado: (2022)