Cargando…
Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images
OBJECTIVE: Automated Pap smear cervical screening is one of the most effective imaging based cancer detection tools used for categorizing cervical cell images as normal and abnormal. Traditional classification methods depend on hand-engineered features and show limitations in large, diverse datasets...
Autores principales: | B, Shanthi P, Faruqi, Faraz, S, Hareesha K, Kudva, Ranjini |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
West Asia Organization for Cancer Prevention
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062987/ https://www.ncbi.nlm.nih.gov/pubmed/31759371 http://dx.doi.org/10.31557/APJCP.2019.20.11.3447 |
Ejemplares similares
-
Microscopic nuclei classification, segmentation, and detection with improved deep convolutional neural networks (DCNN)
por: Alom, Zahangir, et al.
Publicado: (2022) -
Simplified Convolutional Neural Network Application for Cervix Type Classification via Colposcopic Images
por: Pavlov, Vitalii, et al.
Publicado: (2022) -
Convolutional neural network for cell classification using microscope images of intracellular actin networks
por: Oei, Ronald Wihal, et al.
Publicado: (2019) -
Automatic classification of cells in microscopic fecal images using convolutional neural networks
por: Du, Xiaohui, et al.
Publicado: (2019) -
Classification of scanning electron microscope images of pharmaceutical excipients using deep convolutional neural networks with transfer learning
por: Iwata, Hiroaki, et al.
Publicado: (2022)