Cargando…

GLUT1-dependent glycolysis regulates exacerbation of fibrosis via AIM2 inflammasome activation

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a rapidly progressive, fatal lung disease that affects older adults. One of the detrimental natural histories of IPF is acute exacerbation of IPF (AE-IPF), of which bacterial infection is reported to play an important role. However, the mechanism by...

Descripción completa

Detalles Bibliográficos
Autores principales: Cho, Soo Jung, Moon, Jong-Seok, Nikahira, Kiichi, Yun, Ha Seon, Harris, Rebecca, Hong, Kyung Sook, Huang, Huarong, Choi, Augustine M K, Stout-Delgado, Heather
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7063401/
https://www.ncbi.nlm.nih.gov/pubmed/31822523
http://dx.doi.org/10.1136/thoraxjnl-2019-213571
Descripción
Sumario:BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a rapidly progressive, fatal lung disease that affects older adults. One of the detrimental natural histories of IPF is acute exacerbation of IPF (AE-IPF), of which bacterial infection is reported to play an important role. However, the mechanism by which bacterial infection modulates the fibrotic response remains unclear. OBJECTIVES: Altered glucose metabolism has been implicated in the pathogenesis of fibrotic lung diseases. We have previously demonstrated that glucose transporter 1 (GLUT1)-dependent glycolysis regulates fibrogenesis in a murine fibrosis model. To expand on these findings, we hypothesised that GLUT1-dependent glycolysis regulates acute exacerbation of lung fibrogenesis during bacterial infection via AIM2 inflammasome activation. RESULTS: In our current study, using a murine model of Streptococcus pneumoniae (S. pneumoniae) infection, we investigated the potential role of GLUT1 on mediating fibrotic responses to an acute exacerbation during bleomycin-induced fibrosis. The results of our current study illustrate that GLUT1 deficiency ameliorates S. pneumoniae-mediated exacerbation of lung fibrosis (wild type (WT)/phosphate buffered saline (PBS), n=3; WT/S. pneumoniae, n=3; WT/Bleomycin, n=5; WT/Bleomycin+S. pneumoniae, n=7; LysM-Cre-Glut1(fl/f)/PBS, n=3; LysM-Cre-Glut1(fl/fl)/S. pneumoniae, n=3; LysM-Cre-Glut1(fl/fl)/Bleomycin, n=6; LysM-Cre-Glut1(fl/fl)/Bleomycin+S. pneumoniae, n=9, p=0.041). Further, the AIM2 inflammasome, a multiprotein complex essential for sensing cytosolic bacterial DNA as a danger signal, is an important regulator of this GLUT1-mediated fibrosis and genetic deficiency of AIM2 reduced bleomycin-induced fibrosis after S. pneumoniae infection (WT/PBS, n=6; WT/Bleomycin+S. pneumoniae, n=15; Aim2(−/−)/PBS, n=6, Aim2(−/−)/Bleomycin+S. pneumoniae, n=11, p=0.034). GLUT1 deficiency reduced expression and function of the AIM2 inflammasome, and AIM2-deficient mice showed substantial reduction of lung fibrosis after S. pneumoniae infection. CONCLUSION: Our results demonstrate that GLUT1-dependent glycolysis promotes exacerbation of lung fibrogenesis during S. pneumoniae infection via AIM2 inflammasome activation.