Cargando…
Classifying Drugs by their Arrhythmogenic Risk Using Machine Learning
All medications have adverse effects. Among the most serious of these are cardiac arrhythmias. Current paradigms for drug safety evaluation are costly, lengthy, conservative, and impede efficient drug development. Here, we combine multiscale experiment and simulation, high-performance computing, and...
Autores principales: | Sahli-Costabal, Francisco, Seo, Kinya, Ashley, Euan, Kuhl, Ellen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Biophysical Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7063479/ https://www.ncbi.nlm.nih.gov/pubmed/32023435 http://dx.doi.org/10.1016/j.bpj.2020.01.012 |
Ejemplares similares
-
Sex Differences in Drug-Induced Arrhythmogenesis
por: Peirlinck, Mathias, et al.
Publicado: (2021) -
Outbreak dynamics of COVID-19 in China and the United States
por: Peirlinck, Mathias, et al.
Publicado: (2020) -
Visualizing the invisible: The effect of asymptomatic transmission on the outbreak dynamics of COVID-19
por: Peirlinck, Mathias, et al.
Publicado: (2020) -
Visualizing the invisible: The effect of asymptomatic transmission on the outbreak dynamics of COVID-19
por: Peirlinck, Mathias, et al.
Publicado: (2020) -
Risk prediction of cardiovascular disease using machine learning classifiers
por: Pal, Madhumita, et al.
Publicado: (2022)