Cargando…
Comparison of Automated Sepsis Identification Methods and Electronic Health Record–based Sepsis Phenotyping: Improving Case Identification Accuracy by Accounting for Confounding Comorbid Conditions
To develop and evaluate a novel strategy that automates the retrospective identification of sepsis using electronic health record data. DESIGN: Retrospective cohort study of emergency department and in-hospital patient encounters from 2014 to 2018. SETTING: One community and two academic hospitals i...
Autores principales: | Henry, Katharine E., Hager, David N., Osborn, Tiffany M., Wu, Albert W., Saria, Suchi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7063888/ https://www.ncbi.nlm.nih.gov/pubmed/32166234 http://dx.doi.org/10.1097/CCE.0000000000000053 |
Ejemplares similares
-
Automated electronic medical record sepsis detection in the emergency department
por: Nguyen, Su Q., et al.
Publicado: (2014) -
Accounting for confounding
por: Raina, Sunil Kumar
Publicado: (2015) -
Discharge diagnoses versus medical record review in the identification of community-acquired sepsis
por: Wang, Henry E, et al.
Publicado: (2015) -
The Clinical Challenge of Sepsis Identification and Monitoring
por: Vincent, Jean-Louis
Publicado: (2016) -
Identification and characterization of neutrophil heterogeneity in sepsis
por: Qi, Xinxin, et al.
Publicado: (2021)