Cargando…

Mortality Risk Profiles for Sepsis: A Novel Longitudinal and Multivariable Approach

To determine if a set of time-varying biological indicators can be used to: 1) predict the sepsis mortality risk over time and 2) generate mortality risk profiles. DESIGN: Prospective observational study. SETTING: Nine Canadian ICUs. SUBJECTS: Three-hundred fifty-six septic patients. INTERVENTIONS:...

Descripción completa

Detalles Bibliográficos
Autores principales: Liaw, Patricia C., Fox-Robichaud, Alison E., Liaw, Kao-Lee, McDonald, Ellen, Dwivedi, Dhruva J., Zamir, Nasim M., Pepler, Laura, Gould, Travis J., Xu, Michael, Zytaruk, Nicole, Medeiros, Sarah K., McIntyre, Lauralyn, Tsang, Jennifer, Dodek, Peter M., Winston, Brent W., Martin, Claudio, Fraser, Douglas D., Weitz, Jeffrey I., Lellouche, Francois, Cook, Deborah J., Marshall, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer Health 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7063956/
https://www.ncbi.nlm.nih.gov/pubmed/32166273
http://dx.doi.org/10.1097/CCE.0000000000000032
_version_ 1783504789618819072
author Liaw, Patricia C.
Fox-Robichaud, Alison E.
Liaw, Kao-Lee
McDonald, Ellen
Dwivedi, Dhruva J.
Zamir, Nasim M.
Pepler, Laura
Gould, Travis J.
Xu, Michael
Zytaruk, Nicole
Medeiros, Sarah K.
McIntyre, Lauralyn
Tsang, Jennifer
Dodek, Peter M.
Winston, Brent W.
Martin, Claudio
Fraser, Douglas D.
Weitz, Jeffrey I.
Lellouche, Francois
Cook, Deborah J.
Marshall, John
author_facet Liaw, Patricia C.
Fox-Robichaud, Alison E.
Liaw, Kao-Lee
McDonald, Ellen
Dwivedi, Dhruva J.
Zamir, Nasim M.
Pepler, Laura
Gould, Travis J.
Xu, Michael
Zytaruk, Nicole
Medeiros, Sarah K.
McIntyre, Lauralyn
Tsang, Jennifer
Dodek, Peter M.
Winston, Brent W.
Martin, Claudio
Fraser, Douglas D.
Weitz, Jeffrey I.
Lellouche, Francois
Cook, Deborah J.
Marshall, John
author_sort Liaw, Patricia C.
collection PubMed
description To determine if a set of time-varying biological indicators can be used to: 1) predict the sepsis mortality risk over time and 2) generate mortality risk profiles. DESIGN: Prospective observational study. SETTING: Nine Canadian ICUs. SUBJECTS: Three-hundred fifty-six septic patients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Clinical data and plasma levels of biomarkers were collected longitudinally. We used a complementary log-log model to account for the daily mortality risk of each patient until death in ICU/hospital, discharge, or 28 days after admission. The model, which is a versatile version of the Cox model for gaining longitudinal insights, created a composite indicator (the daily hazard of dying) from the “day 1” and “change” variables of six time-varying biological indicators (cell-free DNA, protein C, platelet count, creatinine, Glasgow Coma Scale score, and lactate) and a set of contextual variables (age, presence of chronic lung disease or previous brain injury, and duration of stay), achieving a high predictive power (conventional area under the curve, 0.90; 95% CI, 0.86–0.94). Including change variables avoided misleading inferences about the effects of day 1 variables, signifying the importance of the longitudinal approach. We then generated mortality risk profiles that highlight the relative contributions among the time-varying biological indicators to overall mortality risk. The tool was validated in 28 nonseptic patients from the same ICUs who became septic later and was subject to 10-fold cross-validation, achieving similarly high area under the curve. CONCLUSIONS: Using a novel version of the Cox model, we created a prognostic tool for septic patients that yields not only a predicted probability of dying but also a mortality risk profile that reveals how six time-varying biological indicators differentially and longitudinally account for the patient’s overall daily mortality risk.
format Online
Article
Text
id pubmed-7063956
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Wolters Kluwer Health
record_format MEDLINE/PubMed
spelling pubmed-70639562020-03-12 Mortality Risk Profiles for Sepsis: A Novel Longitudinal and Multivariable Approach Liaw, Patricia C. Fox-Robichaud, Alison E. Liaw, Kao-Lee McDonald, Ellen Dwivedi, Dhruva J. Zamir, Nasim M. Pepler, Laura Gould, Travis J. Xu, Michael Zytaruk, Nicole Medeiros, Sarah K. McIntyre, Lauralyn Tsang, Jennifer Dodek, Peter M. Winston, Brent W. Martin, Claudio Fraser, Douglas D. Weitz, Jeffrey I. Lellouche, Francois Cook, Deborah J. Marshall, John Crit Care Explor Observational Study To determine if a set of time-varying biological indicators can be used to: 1) predict the sepsis mortality risk over time and 2) generate mortality risk profiles. DESIGN: Prospective observational study. SETTING: Nine Canadian ICUs. SUBJECTS: Three-hundred fifty-six septic patients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Clinical data and plasma levels of biomarkers were collected longitudinally. We used a complementary log-log model to account for the daily mortality risk of each patient until death in ICU/hospital, discharge, or 28 days after admission. The model, which is a versatile version of the Cox model for gaining longitudinal insights, created a composite indicator (the daily hazard of dying) from the “day 1” and “change” variables of six time-varying biological indicators (cell-free DNA, protein C, platelet count, creatinine, Glasgow Coma Scale score, and lactate) and a set of contextual variables (age, presence of chronic lung disease or previous brain injury, and duration of stay), achieving a high predictive power (conventional area under the curve, 0.90; 95% CI, 0.86–0.94). Including change variables avoided misleading inferences about the effects of day 1 variables, signifying the importance of the longitudinal approach. We then generated mortality risk profiles that highlight the relative contributions among the time-varying biological indicators to overall mortality risk. The tool was validated in 28 nonseptic patients from the same ICUs who became septic later and was subject to 10-fold cross-validation, achieving similarly high area under the curve. CONCLUSIONS: Using a novel version of the Cox model, we created a prognostic tool for septic patients that yields not only a predicted probability of dying but also a mortality risk profile that reveals how six time-varying biological indicators differentially and longitudinally account for the patient’s overall daily mortality risk. Wolters Kluwer Health 2019-08-01 /pmc/articles/PMC7063956/ /pubmed/32166273 http://dx.doi.org/10.1097/CCE.0000000000000032 Text en Copyright © 2019 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of the Society of Critical Care Medicine. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) , where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
spellingShingle Observational Study
Liaw, Patricia C.
Fox-Robichaud, Alison E.
Liaw, Kao-Lee
McDonald, Ellen
Dwivedi, Dhruva J.
Zamir, Nasim M.
Pepler, Laura
Gould, Travis J.
Xu, Michael
Zytaruk, Nicole
Medeiros, Sarah K.
McIntyre, Lauralyn
Tsang, Jennifer
Dodek, Peter M.
Winston, Brent W.
Martin, Claudio
Fraser, Douglas D.
Weitz, Jeffrey I.
Lellouche, Francois
Cook, Deborah J.
Marshall, John
Mortality Risk Profiles for Sepsis: A Novel Longitudinal and Multivariable Approach
title Mortality Risk Profiles for Sepsis: A Novel Longitudinal and Multivariable Approach
title_full Mortality Risk Profiles for Sepsis: A Novel Longitudinal and Multivariable Approach
title_fullStr Mortality Risk Profiles for Sepsis: A Novel Longitudinal and Multivariable Approach
title_full_unstemmed Mortality Risk Profiles for Sepsis: A Novel Longitudinal and Multivariable Approach
title_short Mortality Risk Profiles for Sepsis: A Novel Longitudinal and Multivariable Approach
title_sort mortality risk profiles for sepsis: a novel longitudinal and multivariable approach
topic Observational Study
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7063956/
https://www.ncbi.nlm.nih.gov/pubmed/32166273
http://dx.doi.org/10.1097/CCE.0000000000000032
work_keys_str_mv AT liawpatriciac mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT foxrobichaudalisone mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT liawkaolee mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT mcdonaldellen mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT dwivedidhruvaj mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT zamirnasimm mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT peplerlaura mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT gouldtravisj mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT xumichael mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT zytaruknicole mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT medeirossarahk mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT mcintyrelauralyn mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT tsangjennifer mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT dodekpeterm mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT winstonbrentw mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT martinclaudio mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT fraserdouglasd mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT weitzjeffreyi mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT lellouchefrancois mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT cookdeborahj mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach
AT marshalljohn mortalityriskprofilesforsepsisanovellongitudinalandmultivariableapproach