Cargando…
Supervised and unsupervised language modelling in Chest X-Ray radiological reports
Chest radiography (CXR) is the most commonly used imaging modality and deep neural network (DNN) algorithms have shown promise in effective triage of normal and abnormal radiograms. Typically, DNNs require large quantities of expertly labelled training exemplars, which in clinical contexts is a majo...
Autores principales: | Drozdov, Ignat, Forbes, Daniel, Szubert, Benjamin, Hall, Mark, Carlin, Chris, Lowe, David J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064166/ https://www.ncbi.nlm.nih.gov/pubmed/32155219 http://dx.doi.org/10.1371/journal.pone.0229963 |
Ejemplares similares
-
Development and prospective validation of COVID-19 chest X-ray screening model for patients attending emergency departments
por: Drozdov, Ignat, et al.
Publicado: (2021) -
Unsupervised anomaly detection for posteroanterior chest X-rays using multiresolution patch-based self-supervised learning
por: Kim, Minki, et al.
Publicado: (2023) -
Structure-preserving visualisation of high dimensional single-cell datasets
por: Szubert, Benjamin, et al.
Publicado: (2019) -
Unsupervised domain adaptation for the detection of cardiomegaly in cross-domain chest X-ray images
por: Thiam, Patrick, et al.
Publicado: (2023) -
Evaluating progress in automatic chest X-ray radiology report generation
por: Yu, Feiyang, et al.
Publicado: (2023)