Cargando…
Fractal solar panels: Optimizing aesthetic and electrical performances
Solar energy technologies have been plagued by their limited visual appeal. Because the electrical power generated by solar panels increases with their surface area and therefore their occupancy of the observer’s visual field, aesthetics will play an increasingly critical role in their future succes...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064250/ https://www.ncbi.nlm.nih.gov/pubmed/32155189 http://dx.doi.org/10.1371/journal.pone.0229945 |
Sumario: | Solar energy technologies have been plagued by their limited visual appeal. Because the electrical power generated by solar panels increases with their surface area and therefore their occupancy of the observer’s visual field, aesthetics will play an increasingly critical role in their future success in urban environments. Inspired by previous psychology research highlighting the aesthetic qualities of fractal patterns, we investigated panel designs featuring fractal electrodes. We conducted behavioral studies which compared observers’ preferences for fractal and conventional bus-bar electrode patterns, along with computer simulations which compared their electrical performances. This led us to develop a hybrid electrode pattern which best combines the fractal and bus-bar designs. Here we show that the new hybrid electrode matches the electrical performance of bus-bars in terms of light transmission and minimizing electrical power losses, while benefiting from the superior aesthetics of fractal patterns. This innovative integration of psychology and engineering studies provides a framework for developing novel electrode patterns with increased implementation and acceptance. |
---|