Cargando…
Cell Nuclei Segmentation in Cytological Images Using Convolutional Neural Network and Seeded Watershed Algorithm
Morphometric analysis of nuclei is crucial in cytological examinations. Unfortunately, nuclei segmentation presents many challenges because they usually create complex clusters in cytological samples. To deal with this problem, we are proposing an approach, which combines convolutional neural networ...
Autores principales: | Kowal, Marek, Żejmo, Michał, Skobel, Marcin, Korbicz, Józef, Monczak, Roman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064474/ https://www.ncbi.nlm.nih.gov/pubmed/31161430 http://dx.doi.org/10.1007/s10278-019-00200-8 |
Ejemplares similares
-
Intelligent systems in technical and medical diagnostics
por: Korbicz, Jozef, et al.
Publicado: (2013) -
Current trends in biomedical engineering and bioimages analysis: proceedings of the 21st Polish conference on biocybernetics and biomedical engineering
por: Korbicz, Józef, et al.
Publicado: (2019) -
Corn Seed Defect Detection Based on Watershed Algorithm and Two-Pathway Convolutional Neural Networks
por: Wang, Linbai, et al.
Publicado: (2022) -
Novel Light Convolutional Neural Network for COVID Detection with Watershed Based Region Growing Segmentation
por: Khan, Hassan Ali, et al.
Publicado: (2023) -
The Algorithm of Watershed Color Image Segmentation Based on Morphological Gradient
por: Wu, Yanyan, et al.
Publicado: (2022)