Cargando…
Pan-cancer diagnostic consensus through searching archival histopathology images using artificial intelligence
The emergence of digital pathology has opened new horizons for histopathology. Artificial intelligence (AI) algorithms are able to operate on digitized slides to assist pathologists with different tasks. Whereas AI-involving classification and segmentation methods have obvious benefits for image ana...
Autores principales: | Kalra, Shivam, Tizhoosh, H. R., Shah, Sultaan, Choi, Charles, Damaskinos, Savvas, Safarpoor, Amir, Shafiei, Sobhan, Babaie, Morteza, Diamandis, Phedias, Campbell, Clinton J. V., Pantanowitz, Liron |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064517/ https://www.ncbi.nlm.nih.gov/pubmed/32195366 http://dx.doi.org/10.1038/s41746-020-0238-2 |
Ejemplares similares
-
A self-supervised contrastive learning approach for whole slide image representation in digital pathology
por: Fashi, Parsa Ashrafi, et al.
Publicado: (2022) -
Artificial Intelligence and Digital Pathology: Challenges and Opportunities
por: Tizhoosh, Hamid Reza, et al.
Publicado: (2018) -
Biased data, biased AI: deep networks predict the acquisition site of TCGA images
por: Dehkharghanian, Taher, et al.
Publicado: (2023) -
Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction
por: Faust, Kevin, et al.
Publicado: (2018) -
Pareto distribution in virtual education: challenges and opportunities
por: Valkanas, Kristina, et al.
Publicado: (2022)