Cargando…
Causal Diagrams: Pitfalls and Tips
Graphical models are useful tools in causal inference, and causal directed acyclic graphs (DAGs) are used extensively to determine the variables for which it is sufficient to control for confounding to estimate causal effects. We discuss the following ten pitfalls and tips that are easily overlooked...
Autores principales: | Suzuki, Etsuji, Shinozaki, Tomohiro, Yamamoto, Eiji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japan Epidemiological Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064555/ https://www.ncbi.nlm.nih.gov/pubmed/32009103 http://dx.doi.org/10.2188/jea.JE20190192 |
Ejemplares similares
-
Understanding Marginal Structural Models for Time-Varying Exposures: Pitfalls and Tips
por: Shinozaki, Tomohiro, et al.
Publicado: (2020) -
Using Propensity Scores for Causal Inference: Pitfalls and Tips
por: Shiba, Koichiro, et al.
Publicado: (2021) -
AI Implementation Science for Social Issues: Pitfalls and Tips
por: Takaoka, Kota
Publicado: (2022) -
Causal diagrams in systems epidemiology
por: Joffe, Michael, et al.
Publicado: (2012) -
Causal diagrams and the cross-sectional study
por: Shahar, Eyal, et al.
Publicado: (2013)