Cargando…
Generic predictions of output probability based on complexities of inputs and outputs
For a broad class of input-output maps, arguments based on the coding theorem from algorithmic information theory (AIT) predict that simple (low Kolmogorov complexity) outputs are exponentially more likely to occur upon uniform random sampling of inputs than complex outputs are. Here, we derive prob...
Autores principales: | Dingle, Kamaludin, Pérez, Guillermo Valle, Louis, Ard A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064605/ https://www.ncbi.nlm.nih.gov/pubmed/32157160 http://dx.doi.org/10.1038/s41598-020-61135-7 |
Ejemplares similares
-
Input–output maps are strongly biased towards simple outputs
por: Dingle, Kamaludin, et al.
Publicado: (2018) -
Predicting phenotype transition probabilities via conditional algorithmic probability approximations
por: Dingle, Kamaludin, et al.
Publicado: (2022) -
Probability-based nonlinear modeling of neural dynamical systems with point-process inputs and outputs
por: Sandler, Roman, et al.
Publicado: (2014) - Input-output techniques : proceedings of the Fifth International Conference on Input-Output Techniques, Geneva, January, 1971 /
-
World Input-Output Network
por: Cerina, Federica, et al.
Publicado: (2015)