Cargando…
Performance Improvement of Near-Infrared Spectroscopy-Based Brain-Computer Interface Using Regularized Linear Discriminant Analysis Ensemble Classifier Based on Bootstrap Aggregating
Ensemble classifiers have been proven to result in better classification accuracy than that of a single strong learner in many machine learning studies. Although many studies on electroencephalography-brain-computer interface (BCI) used ensemble classifiers to enhance the BCI performance, ensemble c...
Autores principales: | Shin, Jaeyoung, Im, Chang-Hwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064639/ https://www.ncbi.nlm.nih.gov/pubmed/32194373 http://dx.doi.org/10.3389/fnins.2020.00168 |
Ejemplares similares
-
Random Subspace Ensemble Learning for Functional Near-Infrared Spectroscopy Brain-Computer Interfaces
por: Shin, Jaeyoung
Publicado: (2020) -
Classifying Children with ADHD Based on Prefrontal Functional Near-infrared Spectroscopy Using Machine Learning
por: Yang, Chan-Mo, et al.
Publicado: (2023) -
Unbiased bootstrap error estimation for linear discriminant analysis
por: Vu, Thang, et al.
Publicado: (2014) -
Subject-Independent Functional Near-Infrared Spectroscopy-Based Brain–Computer Interfaces Based on Convolutional Neural Networks
por: Kwon, Jinuk, et al.
Publicado: (2021) -
Application of Near-Infrared Spectroscopy and Fuzzy Improved Null Linear Discriminant Analysis for Rapid Discrimination of Milk Brands
por: Wu, Xiaohong, et al.
Publicado: (2023)