Cargando…
The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg(3+δ)Sb(2-y)Bi(y) near Room Temperature
The optimization of thermoelectric materials involves the decoupling of the transport of electrons and phonons. In this work, an increased Mg(1)-Mg(2) distance, together with the carrier conduction network protection, has been shown as an effective strategy to increase the weighted mobility (U = μm(...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064820/ https://www.ncbi.nlm.nih.gov/pubmed/32190833 http://dx.doi.org/10.34133/2020/1672051 |
_version_ | 1783504938094034944 |
---|---|
author | Han, Zhijia Gui, Zhigang Zhu, Y. B. Qin, Peng Zhang, Bo-Ping Zhang, Wenqing Huang, Li Liu, Weishu |
author_facet | Han, Zhijia Gui, Zhigang Zhu, Y. B. Qin, Peng Zhang, Bo-Ping Zhang, Wenqing Huang, Li Liu, Weishu |
author_sort | Han, Zhijia |
collection | PubMed |
description | The optimization of thermoelectric materials involves the decoupling of the transport of electrons and phonons. In this work, an increased Mg(1)-Mg(2) distance, together with the carrier conduction network protection, has been shown as an effective strategy to increase the weighted mobility (U = μm(∗3/2)) and hence thermoelectric power factor of Mg(3+δ)Sb(2-y)Bi(y) family near room temperature. Mg(3+δ)Sb(0.5)Bi(1.5) has a high carrier mobility of 247 cm(2) V(−1) s(−1) and a record power factor of 3470 μW m(−1) K(−2) at room temperature. Considering both efficiency and power density, Mg(3+δ)Sb(1.0)Bi(1.0) with a high average ZT of 1.13 and an average power factor of 3184 μW m(−1) K(−2) in the temperature range of 50-250°C would be a strong candidate to replace the conventional n-type thermoelectric material Bi(2)Te(2.7)Se(0.3). The protection of the transport channel through Mg sublattice means alloying on Sb sublattice has little effect on electron while it significantly reduces phonon thermal conductivity, providing us an approach to decouple electron and phonon transport for better thermoelectric materials. |
format | Online Article Text |
id | pubmed-7064820 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | AAAS |
record_format | MEDLINE/PubMed |
spelling | pubmed-70648202020-03-18 The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg(3+δ)Sb(2-y)Bi(y) near Room Temperature Han, Zhijia Gui, Zhigang Zhu, Y. B. Qin, Peng Zhang, Bo-Ping Zhang, Wenqing Huang, Li Liu, Weishu Research (Wash D C) Research Article The optimization of thermoelectric materials involves the decoupling of the transport of electrons and phonons. In this work, an increased Mg(1)-Mg(2) distance, together with the carrier conduction network protection, has been shown as an effective strategy to increase the weighted mobility (U = μm(∗3/2)) and hence thermoelectric power factor of Mg(3+δ)Sb(2-y)Bi(y) family near room temperature. Mg(3+δ)Sb(0.5)Bi(1.5) has a high carrier mobility of 247 cm(2) V(−1) s(−1) and a record power factor of 3470 μW m(−1) K(−2) at room temperature. Considering both efficiency and power density, Mg(3+δ)Sb(1.0)Bi(1.0) with a high average ZT of 1.13 and an average power factor of 3184 μW m(−1) K(−2) in the temperature range of 50-250°C would be a strong candidate to replace the conventional n-type thermoelectric material Bi(2)Te(2.7)Se(0.3). The protection of the transport channel through Mg sublattice means alloying on Sb sublattice has little effect on electron while it significantly reduces phonon thermal conductivity, providing us an approach to decouple electron and phonon transport for better thermoelectric materials. AAAS 2020-02-28 /pmc/articles/PMC7064820/ /pubmed/32190833 http://dx.doi.org/10.34133/2020/1672051 Text en Copyright © 2020 Zhijia Han et al. http://creativecommons.org/licenses/by/4.0/ Exclusive Licensee Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution License (CC BY 4.0). |
spellingShingle | Research Article Han, Zhijia Gui, Zhigang Zhu, Y. B. Qin, Peng Zhang, Bo-Ping Zhang, Wenqing Huang, Li Liu, Weishu The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg(3+δ)Sb(2-y)Bi(y) near Room Temperature |
title | The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg(3+δ)Sb(2-y)Bi(y) near Room Temperature |
title_full | The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg(3+δ)Sb(2-y)Bi(y) near Room Temperature |
title_fullStr | The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg(3+δ)Sb(2-y)Bi(y) near Room Temperature |
title_full_unstemmed | The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg(3+δ)Sb(2-y)Bi(y) near Room Temperature |
title_short | The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg(3+δ)Sb(2-y)Bi(y) near Room Temperature |
title_sort | electronic transport channel protection and tuning in real space to boost the thermoelectric performance of mg(3+δ)sb(2-y)bi(y) near room temperature |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064820/ https://www.ncbi.nlm.nih.gov/pubmed/32190833 http://dx.doi.org/10.34133/2020/1672051 |
work_keys_str_mv | AT hanzhijia theelectronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature AT guizhigang theelectronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature AT zhuyb theelectronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature AT qinpeng theelectronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature AT zhangboping theelectronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature AT zhangwenqing theelectronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature AT huangli theelectronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature AT liuweishu theelectronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature AT hanzhijia electronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature AT guizhigang electronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature AT zhuyb electronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature AT qinpeng electronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature AT zhangboping electronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature AT zhangwenqing electronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature AT huangli electronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature AT liuweishu electronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature |