Cargando…

The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg(3+δ)Sb(2-y)Bi(y) near Room Temperature

The optimization of thermoelectric materials involves the decoupling of the transport of electrons and phonons. In this work, an increased Mg(1)-Mg(2) distance, together with the carrier conduction network protection, has been shown as an effective strategy to increase the weighted mobility (U = μm(...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Zhijia, Gui, Zhigang, Zhu, Y. B., Qin, Peng, Zhang, Bo-Ping, Zhang, Wenqing, Huang, Li, Liu, Weishu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064820/
https://www.ncbi.nlm.nih.gov/pubmed/32190833
http://dx.doi.org/10.34133/2020/1672051
_version_ 1783504938094034944
author Han, Zhijia
Gui, Zhigang
Zhu, Y. B.
Qin, Peng
Zhang, Bo-Ping
Zhang, Wenqing
Huang, Li
Liu, Weishu
author_facet Han, Zhijia
Gui, Zhigang
Zhu, Y. B.
Qin, Peng
Zhang, Bo-Ping
Zhang, Wenqing
Huang, Li
Liu, Weishu
author_sort Han, Zhijia
collection PubMed
description The optimization of thermoelectric materials involves the decoupling of the transport of electrons and phonons. In this work, an increased Mg(1)-Mg(2) distance, together with the carrier conduction network protection, has been shown as an effective strategy to increase the weighted mobility (U = μm(∗3/2)) and hence thermoelectric power factor of Mg(3+δ)Sb(2-y)Bi(y) family near room temperature. Mg(3+δ)Sb(0.5)Bi(1.5) has a high carrier mobility of 247 cm(2) V(−1) s(−1) and a record power factor of 3470 μW m(−1) K(−2) at room temperature. Considering both efficiency and power density, Mg(3+δ)Sb(1.0)Bi(1.0) with a high average ZT of 1.13 and an average power factor of 3184 μW m(−1) K(−2) in the temperature range of 50-250°C would be a strong candidate to replace the conventional n-type thermoelectric material Bi(2)Te(2.7)Se(0.3). The protection of the transport channel through Mg sublattice means alloying on Sb sublattice has little effect on electron while it significantly reduces phonon thermal conductivity, providing us an approach to decouple electron and phonon transport for better thermoelectric materials.
format Online
Article
Text
id pubmed-7064820
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher AAAS
record_format MEDLINE/PubMed
spelling pubmed-70648202020-03-18 The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg(3+δ)Sb(2-y)Bi(y) near Room Temperature Han, Zhijia Gui, Zhigang Zhu, Y. B. Qin, Peng Zhang, Bo-Ping Zhang, Wenqing Huang, Li Liu, Weishu Research (Wash D C) Research Article The optimization of thermoelectric materials involves the decoupling of the transport of electrons and phonons. In this work, an increased Mg(1)-Mg(2) distance, together with the carrier conduction network protection, has been shown as an effective strategy to increase the weighted mobility (U = μm(∗3/2)) and hence thermoelectric power factor of Mg(3+δ)Sb(2-y)Bi(y) family near room temperature. Mg(3+δ)Sb(0.5)Bi(1.5) has a high carrier mobility of 247 cm(2) V(−1) s(−1) and a record power factor of 3470 μW m(−1) K(−2) at room temperature. Considering both efficiency and power density, Mg(3+δ)Sb(1.0)Bi(1.0) with a high average ZT of 1.13 and an average power factor of 3184 μW m(−1) K(−2) in the temperature range of 50-250°C would be a strong candidate to replace the conventional n-type thermoelectric material Bi(2)Te(2.7)Se(0.3). The protection of the transport channel through Mg sublattice means alloying on Sb sublattice has little effect on electron while it significantly reduces phonon thermal conductivity, providing us an approach to decouple electron and phonon transport for better thermoelectric materials. AAAS 2020-02-28 /pmc/articles/PMC7064820/ /pubmed/32190833 http://dx.doi.org/10.34133/2020/1672051 Text en Copyright © 2020 Zhijia Han et al. http://creativecommons.org/licenses/by/4.0/ Exclusive Licensee Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution License (CC BY 4.0).
spellingShingle Research Article
Han, Zhijia
Gui, Zhigang
Zhu, Y. B.
Qin, Peng
Zhang, Bo-Ping
Zhang, Wenqing
Huang, Li
Liu, Weishu
The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg(3+δ)Sb(2-y)Bi(y) near Room Temperature
title The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg(3+δ)Sb(2-y)Bi(y) near Room Temperature
title_full The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg(3+δ)Sb(2-y)Bi(y) near Room Temperature
title_fullStr The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg(3+δ)Sb(2-y)Bi(y) near Room Temperature
title_full_unstemmed The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg(3+δ)Sb(2-y)Bi(y) near Room Temperature
title_short The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg(3+δ)Sb(2-y)Bi(y) near Room Temperature
title_sort electronic transport channel protection and tuning in real space to boost the thermoelectric performance of mg(3+δ)sb(2-y)bi(y) near room temperature
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064820/
https://www.ncbi.nlm.nih.gov/pubmed/32190833
http://dx.doi.org/10.34133/2020/1672051
work_keys_str_mv AT hanzhijia theelectronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature
AT guizhigang theelectronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature
AT zhuyb theelectronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature
AT qinpeng theelectronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature
AT zhangboping theelectronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature
AT zhangwenqing theelectronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature
AT huangli theelectronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature
AT liuweishu theelectronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature
AT hanzhijia electronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature
AT guizhigang electronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature
AT zhuyb electronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature
AT qinpeng electronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature
AT zhangboping electronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature
AT zhangwenqing electronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature
AT huangli electronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature
AT liuweishu electronictransportchannelprotectionandtuninginrealspacetoboostthethermoelectricperformanceofmg3dsb2ybiynearroomtemperature