Cargando…
Peptide‐Based Molecular Strategies To Interfere with Protein Misfolding, Aggregation, and Cell Degeneration
Protein misfolding into amyloid fibrils is linked to more than 40 as yet incurable cell‐ and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and type 2 diabetes. So far, however, only one of the numerous anti‐amyloid molecules has reached patients. This Minirev...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064928/ https://www.ncbi.nlm.nih.gov/pubmed/31529602 http://dx.doi.org/10.1002/anie.201906908 |
Sumario: | Protein misfolding into amyloid fibrils is linked to more than 40 as yet incurable cell‐ and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and type 2 diabetes. So far, however, only one of the numerous anti‐amyloid molecules has reached patients. This Minireview gives an overview of molecular strategies and peptide chemistry “tools” to design, develop, and discover peptide‐based molecules as anti‐amyloid drug candidates. We focus on two major inhibitor rational design strategies: 1) the oldest and most common strategy, based on molecular recognition elements of amyloid self‐assembly, and 2) a more recent approach, based on cross‐amyloid interactions. We discuss why peptide‐based amyloid inhibitors, in particular their advanced generations, can be promising leads or candidates for anti‐amyloid drugs as well as valuable tools for deciphering amyloid‐mediated cell damage and its link to disease pathogenesis. |
---|