Cargando…

Improved fetal blood oxygenation and placental estimated measurements of diffusion‐weighted MRI using data‐driven Bayesian modeling

PURPOSE: Motion correction in placental DW‐MRI is challenging due to maternal breathing motion, maternal movements, and rapid intensity changes. Parameter estimates are usually obtained using least‐squares methods for voxel‐wise fitting; however, they typically give noisy estimates due to low signal...

Descripción completa

Detalles Bibliográficos
Autores principales: Flouri, Dimitra, Owen, David, Aughwane, Rosalind, Mufti, Nada, Maksym, Kasia, Sokolska, Magdalena, Kendall, Giles, Bainbridge, Alan, Atkinson, David, Vercauteren, Tom, Ourselin, Sebastien, David, Anna L., Melbourne, Andrew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064949/
https://www.ncbi.nlm.nih.gov/pubmed/31742785
http://dx.doi.org/10.1002/mrm.28075
_version_ 1783504966359449600
author Flouri, Dimitra
Owen, David
Aughwane, Rosalind
Mufti, Nada
Maksym, Kasia
Sokolska, Magdalena
Kendall, Giles
Bainbridge, Alan
Atkinson, David
Vercauteren, Tom
Ourselin, Sebastien
David, Anna L.
Melbourne, Andrew
author_facet Flouri, Dimitra
Owen, David
Aughwane, Rosalind
Mufti, Nada
Maksym, Kasia
Sokolska, Magdalena
Kendall, Giles
Bainbridge, Alan
Atkinson, David
Vercauteren, Tom
Ourselin, Sebastien
David, Anna L.
Melbourne, Andrew
author_sort Flouri, Dimitra
collection PubMed
description PURPOSE: Motion correction in placental DW‐MRI is challenging due to maternal breathing motion, maternal movements, and rapid intensity changes. Parameter estimates are usually obtained using least‐squares methods for voxel‐wise fitting; however, they typically give noisy estimates due to low signal‐to‐noise ratio. We introduce a model‐driven registration (MDR) technique which incorporates a placenta‐specific signal model into the registration process, and we present a Bayesian approach for Diffusion‐rElaxation Combined Imaging for Detailed placental Evaluation model to obtain individual and population trends in estimated parameters. METHODS: MDR exploits the fact that a placenta signal model is available and thus we incorporate it into the registration to generate a series of target images. The proposed registration method is compared to a pre‐existing method used for DCE‐MRI data making use of principal components analysis. The Bayesian shrinkage prior (BSP) method has no user‐defined parameters and therefore measures of parameter variation in a region of interest are determined by the data alone. The MDR method and the Bayesian approach were evaluated on 10 control 4D DW‐MRI singleton placental data. RESULTS: MDR method improves the alignment of placenta data compared to the pre‐existing method. It also shows a further reduction of the residual error between the data and the fit. BSP approach showed higher precision leading to more clearly apparent spatial features in the parameter maps. Placental fetal oxygen saturation (FO(2)) showed a negative linear correlation with gestational age. CONCLUSIONS: The proposed pipeline provides a robust framework for registering DW‐MRI data and analyzing longitudinal changes of placental function.
format Online
Article
Text
id pubmed-7064949
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-70649492020-03-16 Improved fetal blood oxygenation and placental estimated measurements of diffusion‐weighted MRI using data‐driven Bayesian modeling Flouri, Dimitra Owen, David Aughwane, Rosalind Mufti, Nada Maksym, Kasia Sokolska, Magdalena Kendall, Giles Bainbridge, Alan Atkinson, David Vercauteren, Tom Ourselin, Sebastien David, Anna L. Melbourne, Andrew Magn Reson Med Full Papers—Imaging Methodology PURPOSE: Motion correction in placental DW‐MRI is challenging due to maternal breathing motion, maternal movements, and rapid intensity changes. Parameter estimates are usually obtained using least‐squares methods for voxel‐wise fitting; however, they typically give noisy estimates due to low signal‐to‐noise ratio. We introduce a model‐driven registration (MDR) technique which incorporates a placenta‐specific signal model into the registration process, and we present a Bayesian approach for Diffusion‐rElaxation Combined Imaging for Detailed placental Evaluation model to obtain individual and population trends in estimated parameters. METHODS: MDR exploits the fact that a placenta signal model is available and thus we incorporate it into the registration to generate a series of target images. The proposed registration method is compared to a pre‐existing method used for DCE‐MRI data making use of principal components analysis. The Bayesian shrinkage prior (BSP) method has no user‐defined parameters and therefore measures of parameter variation in a region of interest are determined by the data alone. The MDR method and the Bayesian approach were evaluated on 10 control 4D DW‐MRI singleton placental data. RESULTS: MDR method improves the alignment of placenta data compared to the pre‐existing method. It also shows a further reduction of the residual error between the data and the fit. BSP approach showed higher precision leading to more clearly apparent spatial features in the parameter maps. Placental fetal oxygen saturation (FO(2)) showed a negative linear correlation with gestational age. CONCLUSIONS: The proposed pipeline provides a robust framework for registering DW‐MRI data and analyzing longitudinal changes of placental function. John Wiley and Sons Inc. 2019-11-19 2020-06 /pmc/articles/PMC7064949/ /pubmed/31742785 http://dx.doi.org/10.1002/mrm.28075 Text en © 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers—Imaging Methodology
Flouri, Dimitra
Owen, David
Aughwane, Rosalind
Mufti, Nada
Maksym, Kasia
Sokolska, Magdalena
Kendall, Giles
Bainbridge, Alan
Atkinson, David
Vercauteren, Tom
Ourselin, Sebastien
David, Anna L.
Melbourne, Andrew
Improved fetal blood oxygenation and placental estimated measurements of diffusion‐weighted MRI using data‐driven Bayesian modeling
title Improved fetal blood oxygenation and placental estimated measurements of diffusion‐weighted MRI using data‐driven Bayesian modeling
title_full Improved fetal blood oxygenation and placental estimated measurements of diffusion‐weighted MRI using data‐driven Bayesian modeling
title_fullStr Improved fetal blood oxygenation and placental estimated measurements of diffusion‐weighted MRI using data‐driven Bayesian modeling
title_full_unstemmed Improved fetal blood oxygenation and placental estimated measurements of diffusion‐weighted MRI using data‐driven Bayesian modeling
title_short Improved fetal blood oxygenation and placental estimated measurements of diffusion‐weighted MRI using data‐driven Bayesian modeling
title_sort improved fetal blood oxygenation and placental estimated measurements of diffusion‐weighted mri using data‐driven bayesian modeling
topic Full Papers—Imaging Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064949/
https://www.ncbi.nlm.nih.gov/pubmed/31742785
http://dx.doi.org/10.1002/mrm.28075
work_keys_str_mv AT flouridimitra improvedfetalbloodoxygenationandplacentalestimatedmeasurementsofdiffusionweightedmriusingdatadrivenbayesianmodeling
AT owendavid improvedfetalbloodoxygenationandplacentalestimatedmeasurementsofdiffusionweightedmriusingdatadrivenbayesianmodeling
AT aughwanerosalind improvedfetalbloodoxygenationandplacentalestimatedmeasurementsofdiffusionweightedmriusingdatadrivenbayesianmodeling
AT muftinada improvedfetalbloodoxygenationandplacentalestimatedmeasurementsofdiffusionweightedmriusingdatadrivenbayesianmodeling
AT maksymkasia improvedfetalbloodoxygenationandplacentalestimatedmeasurementsofdiffusionweightedmriusingdatadrivenbayesianmodeling
AT sokolskamagdalena improvedfetalbloodoxygenationandplacentalestimatedmeasurementsofdiffusionweightedmriusingdatadrivenbayesianmodeling
AT kendallgiles improvedfetalbloodoxygenationandplacentalestimatedmeasurementsofdiffusionweightedmriusingdatadrivenbayesianmodeling
AT bainbridgealan improvedfetalbloodoxygenationandplacentalestimatedmeasurementsofdiffusionweightedmriusingdatadrivenbayesianmodeling
AT atkinsondavid improvedfetalbloodoxygenationandplacentalestimatedmeasurementsofdiffusionweightedmriusingdatadrivenbayesianmodeling
AT vercauterentom improvedfetalbloodoxygenationandplacentalestimatedmeasurementsofdiffusionweightedmriusingdatadrivenbayesianmodeling
AT ourselinsebastien improvedfetalbloodoxygenationandplacentalestimatedmeasurementsofdiffusionweightedmriusingdatadrivenbayesianmodeling
AT davidannal improvedfetalbloodoxygenationandplacentalestimatedmeasurementsofdiffusionweightedmriusingdatadrivenbayesianmodeling
AT melbourneandrew improvedfetalbloodoxygenationandplacentalestimatedmeasurementsofdiffusionweightedmriusingdatadrivenbayesianmodeling