Cargando…

Impact of plants on the diversity and activity of methylotrophs in soil

BACKGROUND: Methanol is the second most abundant volatile organic compound in the atmosphere, with the majority produced as a metabolic by-product during plant growth. There is a large disparity between the estimated amount of methanol produced by plants and the amount which escapes to the atmospher...

Descripción completa

Detalles Bibliográficos
Autores principales: Macey, Michael C., Pratscher, Jennifer, Crombie, Andrew T., Murrell, J. Colin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065363/
https://www.ncbi.nlm.nih.gov/pubmed/32156318
http://dx.doi.org/10.1186/s40168-020-00801-4
_version_ 1783505053504503808
author Macey, Michael C.
Pratscher, Jennifer
Crombie, Andrew T.
Murrell, J. Colin
author_facet Macey, Michael C.
Pratscher, Jennifer
Crombie, Andrew T.
Murrell, J. Colin
author_sort Macey, Michael C.
collection PubMed
description BACKGROUND: Methanol is the second most abundant volatile organic compound in the atmosphere, with the majority produced as a metabolic by-product during plant growth. There is a large disparity between the estimated amount of methanol produced by plants and the amount which escapes to the atmosphere. This may be due to utilisation of methanol by plant-associated methanol-consuming bacteria (methylotrophs). The use of molecular probes has previously been effective in characterising the diversity of methylotrophs within the environment. Here, we developed and applied molecular probes in combination with stable isotope probing to identify the diversity, abundance and activity of methylotrophs in bulk and in plant-associated soils. RESULTS: Application of probes for methanol dehydrogenase genes (mxaF, xoxF, mdh2) in bulk and plant-associated soils revealed high levels of diversity of methylotrophic bacteria within the bulk soil, including Hyphomicrobium, Methylobacterium and members of the Comamonadaceae. The community of methylotrophic bacteria captured by this sequencing approach changed following plant growth. This shift in methylotrophic diversity was corroborated by identification of the active methylotrophs present in the soils by DNA stable isotope probing using (13)C-labelled methanol. Sequencing of the 16S rRNA genes and construction of metagenomes from the (13)C-labelled DNA revealed members of the Methylophilaceae as highly abundant and active in all soils examined. There was greater diversity of active members of the Methylophilaceae and Comamonadaceae and of the genus Methylobacterium in plant-associated soils compared to the bulk soil. Incubating growing pea plants in a (13)CO(2) atmosphere revealed that several genera of methylotrophs, as well as heterotrophic genera within the Actinomycetales, assimilated plant exudates in the pea rhizosphere. CONCLUSION: In this study, we show that plant growth has a major impact on both the diversity and the activity of methanol-utilising methylotrophs in the soil environment, and thus, the study contributes significantly to efforts to balance the terrestrial methanol and carbon cycle.
format Online
Article
Text
id pubmed-7065363
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-70653632020-03-16 Impact of plants on the diversity and activity of methylotrophs in soil Macey, Michael C. Pratscher, Jennifer Crombie, Andrew T. Murrell, J. Colin Microbiome Research BACKGROUND: Methanol is the second most abundant volatile organic compound in the atmosphere, with the majority produced as a metabolic by-product during plant growth. There is a large disparity between the estimated amount of methanol produced by plants and the amount which escapes to the atmosphere. This may be due to utilisation of methanol by plant-associated methanol-consuming bacteria (methylotrophs). The use of molecular probes has previously been effective in characterising the diversity of methylotrophs within the environment. Here, we developed and applied molecular probes in combination with stable isotope probing to identify the diversity, abundance and activity of methylotrophs in bulk and in plant-associated soils. RESULTS: Application of probes for methanol dehydrogenase genes (mxaF, xoxF, mdh2) in bulk and plant-associated soils revealed high levels of diversity of methylotrophic bacteria within the bulk soil, including Hyphomicrobium, Methylobacterium and members of the Comamonadaceae. The community of methylotrophic bacteria captured by this sequencing approach changed following plant growth. This shift in methylotrophic diversity was corroborated by identification of the active methylotrophs present in the soils by DNA stable isotope probing using (13)C-labelled methanol. Sequencing of the 16S rRNA genes and construction of metagenomes from the (13)C-labelled DNA revealed members of the Methylophilaceae as highly abundant and active in all soils examined. There was greater diversity of active members of the Methylophilaceae and Comamonadaceae and of the genus Methylobacterium in plant-associated soils compared to the bulk soil. Incubating growing pea plants in a (13)CO(2) atmosphere revealed that several genera of methylotrophs, as well as heterotrophic genera within the Actinomycetales, assimilated plant exudates in the pea rhizosphere. CONCLUSION: In this study, we show that plant growth has a major impact on both the diversity and the activity of methanol-utilising methylotrophs in the soil environment, and thus, the study contributes significantly to efforts to balance the terrestrial methanol and carbon cycle. BioMed Central 2020-03-10 /pmc/articles/PMC7065363/ /pubmed/32156318 http://dx.doi.org/10.1186/s40168-020-00801-4 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Macey, Michael C.
Pratscher, Jennifer
Crombie, Andrew T.
Murrell, J. Colin
Impact of plants on the diversity and activity of methylotrophs in soil
title Impact of plants on the diversity and activity of methylotrophs in soil
title_full Impact of plants on the diversity and activity of methylotrophs in soil
title_fullStr Impact of plants on the diversity and activity of methylotrophs in soil
title_full_unstemmed Impact of plants on the diversity and activity of methylotrophs in soil
title_short Impact of plants on the diversity and activity of methylotrophs in soil
title_sort impact of plants on the diversity and activity of methylotrophs in soil
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065363/
https://www.ncbi.nlm.nih.gov/pubmed/32156318
http://dx.doi.org/10.1186/s40168-020-00801-4
work_keys_str_mv AT maceymichaelc impactofplantsonthediversityandactivityofmethylotrophsinsoil
AT pratscherjennifer impactofplantsonthediversityandactivityofmethylotrophsinsoil
AT crombieandrewt impactofplantsonthediversityandactivityofmethylotrophsinsoil
AT murrelljcolin impactofplantsonthediversityandactivityofmethylotrophsinsoil