Cargando…
Effects of polymorphisms in CAPN1 and CAST genes on meat tenderness of Chinese Simmental cattle
Considerable evidence has demonstrated that the [Formula: see text]-calpain (CAPN1) gene and its inhibitor calpastatin (CAST) gene are major factors affecting meat quality. Marker-assisted selection (MAS) has been widely used to improve beef quality traits. Therefore, the objective of the present st...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Copernicus GmbH
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065412/ https://www.ncbi.nlm.nih.gov/pubmed/32175450 http://dx.doi.org/10.5194/aab-61-433-2018 |
_version_ | 1783505061247188992 |
---|---|
author | Sun, Xiaomei Wu, Xiuxiang Fan, Yongliang Mao, Yongjiang Ji, Dejun Huang, Bizhi Yang, Zhangping |
author_facet | Sun, Xiaomei Wu, Xiuxiang Fan, Yongliang Mao, Yongjiang Ji, Dejun Huang, Bizhi Yang, Zhangping |
author_sort | Sun, Xiaomei |
collection | PubMed |
description | Considerable evidence has demonstrated that the [Formula: see text]-calpain (CAPN1) gene and its inhibitor calpastatin (CAST) gene are major factors affecting meat quality. Marker-assisted selection (MAS) has been widely used to improve beef quality traits. Therefore, the objective of the present study was to investigate the single nucleotide polymorphisms (SNPs) of bovine CAPN1 and CAST genes using 367 animals representing the four main Chinese cattle breeds and to explore the effects of these SNPs on meat quality traits. Two SNPs within CAPN1 and one SNP in CAST were successfully identified in cattle. Genetic diversity analyses suggested that most SNPs in the four breeds exhibited a moderate genetic diversity. Moreover, associations between individual markers and meat quality traits were analyzed in Chinese Simmental cattle. The CAPN1 4558 A > G locus was found to be significantly associated with shear force value (SFV) and marbling score (BMS), and CAPN1 4684 C > T exerted a significant effect on SFV, while the CAST genotype was not significantly associated with any of the measured traits. SFV, commonly used to measure meat tenderness, represents an important quality trait as it contributes to the flavor of cooked meat. This work confirms the effect of CAPN1 on beef tenderness and lays an important foundation for future cattle breeding. |
format | Online Article Text |
id | pubmed-7065412 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Copernicus GmbH |
record_format | MEDLINE/PubMed |
spelling | pubmed-70654122020-03-13 Effects of polymorphisms in CAPN1 and CAST genes on meat tenderness of Chinese Simmental cattle Sun, Xiaomei Wu, Xiuxiang Fan, Yongliang Mao, Yongjiang Ji, Dejun Huang, Bizhi Yang, Zhangping Arch Anim Breed Original Study Considerable evidence has demonstrated that the [Formula: see text]-calpain (CAPN1) gene and its inhibitor calpastatin (CAST) gene are major factors affecting meat quality. Marker-assisted selection (MAS) has been widely used to improve beef quality traits. Therefore, the objective of the present study was to investigate the single nucleotide polymorphisms (SNPs) of bovine CAPN1 and CAST genes using 367 animals representing the four main Chinese cattle breeds and to explore the effects of these SNPs on meat quality traits. Two SNPs within CAPN1 and one SNP in CAST were successfully identified in cattle. Genetic diversity analyses suggested that most SNPs in the four breeds exhibited a moderate genetic diversity. Moreover, associations between individual markers and meat quality traits were analyzed in Chinese Simmental cattle. The CAPN1 4558 A > G locus was found to be significantly associated with shear force value (SFV) and marbling score (BMS), and CAPN1 4684 C > T exerted a significant effect on SFV, while the CAST genotype was not significantly associated with any of the measured traits. SFV, commonly used to measure meat tenderness, represents an important quality trait as it contributes to the flavor of cooked meat. This work confirms the effect of CAPN1 on beef tenderness and lays an important foundation for future cattle breeding. Copernicus GmbH 2018-11-02 /pmc/articles/PMC7065412/ /pubmed/32175450 http://dx.doi.org/10.5194/aab-61-433-2018 Text en Copyright: © 2018 Xiaomei Sun et al. This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Original Study Sun, Xiaomei Wu, Xiuxiang Fan, Yongliang Mao, Yongjiang Ji, Dejun Huang, Bizhi Yang, Zhangping Effects of polymorphisms in CAPN1 and CAST genes on meat tenderness of Chinese Simmental cattle |
title | Effects of polymorphisms in CAPN1 and CAST genes on meat tenderness of Chinese Simmental cattle |
title_full | Effects of polymorphisms in CAPN1 and CAST genes on meat tenderness of Chinese Simmental cattle |
title_fullStr | Effects of polymorphisms in CAPN1 and CAST genes on meat tenderness of Chinese Simmental cattle |
title_full_unstemmed | Effects of polymorphisms in CAPN1 and CAST genes on meat tenderness of Chinese Simmental cattle |
title_short | Effects of polymorphisms in CAPN1 and CAST genes on meat tenderness of Chinese Simmental cattle |
title_sort | effects of polymorphisms in capn1 and cast genes on meat tenderness of chinese simmental cattle |
topic | Original Study |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065412/ https://www.ncbi.nlm.nih.gov/pubmed/32175450 http://dx.doi.org/10.5194/aab-61-433-2018 |
work_keys_str_mv | AT sunxiaomei effectsofpolymorphismsincapn1andcastgenesonmeattendernessofchinesesimmentalcattle AT wuxiuxiang effectsofpolymorphismsincapn1andcastgenesonmeattendernessofchinesesimmentalcattle AT fanyongliang effectsofpolymorphismsincapn1andcastgenesonmeattendernessofchinesesimmentalcattle AT maoyongjiang effectsofpolymorphismsincapn1andcastgenesonmeattendernessofchinesesimmentalcattle AT jidejun effectsofpolymorphismsincapn1andcastgenesonmeattendernessofchinesesimmentalcattle AT huangbizhi effectsofpolymorphismsincapn1andcastgenesonmeattendernessofchinesesimmentalcattle AT yangzhangping effectsofpolymorphismsincapn1andcastgenesonmeattendernessofchinesesimmentalcattle |