Cargando…
Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe
A forward imaging endoscope for optical coherence tomography angiography (OCTA) featuring a piezoelectric fiber scanner is presented. Imaging is performed with an optical coherence tomography (OCT) system incorporating an akinetic light source with a center wavelength of 1300 nm, bandwidth of 90 nm...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
WILEY‐VCH Verlag GmbH & Co. KGaA
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065608/ https://www.ncbi.nlm.nih.gov/pubmed/30652423 http://dx.doi.org/10.1002/jbio.201800382 |
_version_ | 1783505089120436224 |
---|---|
author | Wurster, Lara M. Shah, Ronak N. Placzek, Fabian Kretschmer, Simon Niederleithner, Michael Ginner, Laurin Ensher, Jason Minneman, Michael P. Hoover, Erich E. Zappe, Hans Drexler, Wolfgang Leitgeb, Rainer A. Ataman, Çağlar |
author_facet | Wurster, Lara M. Shah, Ronak N. Placzek, Fabian Kretschmer, Simon Niederleithner, Michael Ginner, Laurin Ensher, Jason Minneman, Michael P. Hoover, Erich E. Zappe, Hans Drexler, Wolfgang Leitgeb, Rainer A. Ataman, Çağlar |
author_sort | Wurster, Lara M. |
collection | PubMed |
description | A forward imaging endoscope for optical coherence tomography angiography (OCTA) featuring a piezoelectric fiber scanner is presented. Imaging is performed with an optical coherence tomography (OCT) system incorporating an akinetic light source with a center wavelength of 1300 nm, bandwidth of 90 nm and A‐line rate of 173 kHz. The endoscope operates in contact mode to avoid motion artifacts, in particular, beneficial for OCTA measurements, and achieves a transversal resolution of 12 μm in air at a rigid probe size of 4 mm in diameter and 11.3 mm in length. A spiral scan pattern is generated at a scanning frequency of 360 Hz to sample a maximum field of view of 1.3 mm. OCT images of a human finger as well as visualization of microvasculature of the human palm are presented both in two and three dimensions. The combination of morphological tissue contrast with qualitative dynamic blood flow information within this endoscopic imaging approach potentially enables improved early diagnostic capabilities of internal organs for diseases such as bladder cancer. [Image: see text] |
format | Online Article Text |
id | pubmed-7065608 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | WILEY‐VCH Verlag GmbH & Co. KGaA |
record_format | MEDLINE/PubMed |
spelling | pubmed-70656082020-03-16 Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe Wurster, Lara M. Shah, Ronak N. Placzek, Fabian Kretschmer, Simon Niederleithner, Michael Ginner, Laurin Ensher, Jason Minneman, Michael P. Hoover, Erich E. Zappe, Hans Drexler, Wolfgang Leitgeb, Rainer A. Ataman, Çağlar J Biophotonics Letter A forward imaging endoscope for optical coherence tomography angiography (OCTA) featuring a piezoelectric fiber scanner is presented. Imaging is performed with an optical coherence tomography (OCT) system incorporating an akinetic light source with a center wavelength of 1300 nm, bandwidth of 90 nm and A‐line rate of 173 kHz. The endoscope operates in contact mode to avoid motion artifacts, in particular, beneficial for OCTA measurements, and achieves a transversal resolution of 12 μm in air at a rigid probe size of 4 mm in diameter and 11.3 mm in length. A spiral scan pattern is generated at a scanning frequency of 360 Hz to sample a maximum field of view of 1.3 mm. OCT images of a human finger as well as visualization of microvasculature of the human palm are presented both in two and three dimensions. The combination of morphological tissue contrast with qualitative dynamic blood flow information within this endoscopic imaging approach potentially enables improved early diagnostic capabilities of internal organs for diseases such as bladder cancer. [Image: see text] WILEY‐VCH Verlag GmbH & Co. KGaA 2019-01-30 2019-04 /pmc/articles/PMC7065608/ /pubmed/30652423 http://dx.doi.org/10.1002/jbio.201800382 Text en © 2019 The Authors. Journal of Biophotonics published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Letter Wurster, Lara M. Shah, Ronak N. Placzek, Fabian Kretschmer, Simon Niederleithner, Michael Ginner, Laurin Ensher, Jason Minneman, Michael P. Hoover, Erich E. Zappe, Hans Drexler, Wolfgang Leitgeb, Rainer A. Ataman, Çağlar Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe |
title | Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe |
title_full | Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe |
title_fullStr | Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe |
title_full_unstemmed | Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe |
title_short | Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe |
title_sort | endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe |
topic | Letter |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065608/ https://www.ncbi.nlm.nih.gov/pubmed/30652423 http://dx.doi.org/10.1002/jbio.201800382 |
work_keys_str_mv | AT wursterlaram endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe AT shahronakn endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe AT placzekfabian endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe AT kretschmersimon endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe AT niederleithnermichael endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe AT ginnerlaurin endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe AT ensherjason endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe AT minnemanmichaelp endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe AT hoovereriche endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe AT zappehans endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe AT drexlerwolfgang endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe AT leitgebrainera endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe AT atamancaglar endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe |