Cargando…

Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe

A forward imaging endoscope for optical coherence tomography angiography (OCTA) featuring a piezoelectric fiber scanner is presented. Imaging is performed with an optical coherence tomography (OCT) system incorporating an akinetic light source with a center wavelength of 1300 nm, bandwidth of 90 nm...

Descripción completa

Detalles Bibliográficos
Autores principales: Wurster, Lara M., Shah, Ronak N., Placzek, Fabian, Kretschmer, Simon, Niederleithner, Michael, Ginner, Laurin, Ensher, Jason, Minneman, Michael P., Hoover, Erich E., Zappe, Hans, Drexler, Wolfgang, Leitgeb, Rainer A., Ataman, Çağlar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY‐VCH Verlag GmbH & Co. KGaA 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065608/
https://www.ncbi.nlm.nih.gov/pubmed/30652423
http://dx.doi.org/10.1002/jbio.201800382
_version_ 1783505089120436224
author Wurster, Lara M.
Shah, Ronak N.
Placzek, Fabian
Kretschmer, Simon
Niederleithner, Michael
Ginner, Laurin
Ensher, Jason
Minneman, Michael P.
Hoover, Erich E.
Zappe, Hans
Drexler, Wolfgang
Leitgeb, Rainer A.
Ataman, Çağlar
author_facet Wurster, Lara M.
Shah, Ronak N.
Placzek, Fabian
Kretschmer, Simon
Niederleithner, Michael
Ginner, Laurin
Ensher, Jason
Minneman, Michael P.
Hoover, Erich E.
Zappe, Hans
Drexler, Wolfgang
Leitgeb, Rainer A.
Ataman, Çağlar
author_sort Wurster, Lara M.
collection PubMed
description A forward imaging endoscope for optical coherence tomography angiography (OCTA) featuring a piezoelectric fiber scanner is presented. Imaging is performed with an optical coherence tomography (OCT) system incorporating an akinetic light source with a center wavelength of 1300 nm, bandwidth of 90 nm and A‐line rate of 173 kHz. The endoscope operates in contact mode to avoid motion artifacts, in particular, beneficial for OCTA measurements, and achieves a transversal resolution of 12 μm in air at a rigid probe size of 4 mm in diameter and 11.3 mm in length. A spiral scan pattern is generated at a scanning frequency of 360 Hz to sample a maximum field of view of 1.3 mm. OCT images of a human finger as well as visualization of microvasculature of the human palm are presented both in two and three dimensions. The combination of morphological tissue contrast with qualitative dynamic blood flow information within this endoscopic imaging approach potentially enables improved early diagnostic capabilities of internal organs for diseases such as bladder cancer. [Image: see text]
format Online
Article
Text
id pubmed-7065608
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher WILEY‐VCH Verlag GmbH & Co. KGaA
record_format MEDLINE/PubMed
spelling pubmed-70656082020-03-16 Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe Wurster, Lara M. Shah, Ronak N. Placzek, Fabian Kretschmer, Simon Niederleithner, Michael Ginner, Laurin Ensher, Jason Minneman, Michael P. Hoover, Erich E. Zappe, Hans Drexler, Wolfgang Leitgeb, Rainer A. Ataman, Çağlar J Biophotonics Letter A forward imaging endoscope for optical coherence tomography angiography (OCTA) featuring a piezoelectric fiber scanner is presented. Imaging is performed with an optical coherence tomography (OCT) system incorporating an akinetic light source with a center wavelength of 1300 nm, bandwidth of 90 nm and A‐line rate of 173 kHz. The endoscope operates in contact mode to avoid motion artifacts, in particular, beneficial for OCTA measurements, and achieves a transversal resolution of 12 μm in air at a rigid probe size of 4 mm in diameter and 11.3 mm in length. A spiral scan pattern is generated at a scanning frequency of 360 Hz to sample a maximum field of view of 1.3 mm. OCT images of a human finger as well as visualization of microvasculature of the human palm are presented both in two and three dimensions. The combination of morphological tissue contrast with qualitative dynamic blood flow information within this endoscopic imaging approach potentially enables improved early diagnostic capabilities of internal organs for diseases such as bladder cancer. [Image: see text] WILEY‐VCH Verlag GmbH & Co. KGaA 2019-01-30 2019-04 /pmc/articles/PMC7065608/ /pubmed/30652423 http://dx.doi.org/10.1002/jbio.201800382 Text en © 2019 The Authors. Journal of Biophotonics published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Letter
Wurster, Lara M.
Shah, Ronak N.
Placzek, Fabian
Kretschmer, Simon
Niederleithner, Michael
Ginner, Laurin
Ensher, Jason
Minneman, Michael P.
Hoover, Erich E.
Zappe, Hans
Drexler, Wolfgang
Leitgeb, Rainer A.
Ataman, Çağlar
Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe
title Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe
title_full Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe
title_fullStr Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe
title_full_unstemmed Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe
title_short Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe
title_sort endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe
topic Letter
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065608/
https://www.ncbi.nlm.nih.gov/pubmed/30652423
http://dx.doi.org/10.1002/jbio.201800382
work_keys_str_mv AT wursterlaram endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe
AT shahronakn endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe
AT placzekfabian endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe
AT kretschmersimon endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe
AT niederleithnermichael endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe
AT ginnerlaurin endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe
AT ensherjason endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe
AT minnemanmichaelp endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe
AT hoovereriche endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe
AT zappehans endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe
AT drexlerwolfgang endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe
AT leitgebrainera endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe
AT atamancaglar endoscopicopticalcoherencetomographyangiographyusingaforwardimagingpiezoscannerprobe