Cargando…

Parallelized shifted‐excitation Raman difference spectroscopy for fluorescence rejection in a temporary varying system

A fluorescence background is one of the common interference factors of the Raman spectroscopic analysis in the biology field. Shifted‐excitation Raman difference spectroscopy (SERDS), in which a slow (typically 1 Hz) modulation to excitation wavelength is coupled with a sequential acquisition of alt...

Descripción completa

Detalles Bibliográficos
Autores principales: Shimada, Rintaro, Nakamura, Takashi, Ozawa, Takeaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY‐VCH Verlag GmbH & Co. KGaA 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065630/
https://www.ncbi.nlm.nih.gov/pubmed/31407507
http://dx.doi.org/10.1002/jbio.201960028
Descripción
Sumario:A fluorescence background is one of the common interference factors of the Raman spectroscopic analysis in the biology field. Shifted‐excitation Raman difference spectroscopy (SERDS), in which a slow (typically 1 Hz) modulation to excitation wavelength is coupled with a sequential acquisition of alternating shifted‐excitation spectra, has been used to separate Raman scattering from excitation‐shift insensitive background. This sequential method is susceptible to spectral change and thus is limited only to stable samples. We incorporated a fast laser modulation (200 Hz) and a mechanical streak camera into SERDS to effectively parallelize the SERDS measurement in a single exposure. The developed system expands the scope of SERDS to include temporary varying system. The proof of concept is demonstrated using highly fluorescent samples, including living algae. Quantitative performance in fluorescence rejection and the robustness of the method to the dynamic spectral change during the measurement are manifested. [Image: see text]