Cargando…
Multi‐ATOM: Ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution
A growing body of evidence has substantiated the significance of quantitative phase imaging (QPI) in enabling cost‐effective and label‐free cellular assays, which provides useful insights into understanding the biophysical properties of cells and their roles in cellular functions. However, available...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
WILEY‐VCH Verlag GmbH & Co. KGaA
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065649/ https://www.ncbi.nlm.nih.gov/pubmed/30719868 http://dx.doi.org/10.1002/jbio.201800479 |
_version_ | 1783505098244096000 |
---|---|
author | Lee, Kelvin C. M. Lau, Andy K. S. Tang, Anson H. L. Wang, Maolin Mok, Aaron T. Y. Chung, Bob M. F. Yan, Wenwei Shum, Ho C. Cheah, Kathryn S. E. Chan, Godfrey C. F. So, Hayden K. H. Wong, Kenneth K. Y. Tsia, Kevin K. |
author_facet | Lee, Kelvin C. M. Lau, Andy K. S. Tang, Anson H. L. Wang, Maolin Mok, Aaron T. Y. Chung, Bob M. F. Yan, Wenwei Shum, Ho C. Cheah, Kathryn S. E. Chan, Godfrey C. F. So, Hayden K. H. Wong, Kenneth K. Y. Tsia, Kevin K. |
author_sort | Lee, Kelvin C. M. |
collection | PubMed |
description | A growing body of evidence has substantiated the significance of quantitative phase imaging (QPI) in enabling cost‐effective and label‐free cellular assays, which provides useful insights into understanding the biophysical properties of cells and their roles in cellular functions. However, available QPI modalities are limited by the loss of imaging resolution at high throughput and thus run short of sufficient statistical power at the single‐cell precision to define cell identities in a large and heterogeneous population of cells—hindering their utility in mainstream biomedicine and biology. Here we present a new QPI modality, coined multiplexed asymmetric‐detection time‐stretch optical microscopy (multi‐ATOM) that captures and processes quantitative label‐free single‐cell images at ultrahigh throughput without compromising subcellular resolution. We show that multi‐ATOM, based upon ultrafast phase‐gradient encoding, outperforms state‐of‐the‐art QPI in permitting robust phase retrieval at a QPI throughput of >10 000 cell/sec, bypassing the need for interferometry which inevitably compromises QPI quality under ultrafast operation. We employ multi‐ATOM for large‐scale, label‐free, multivariate, cell‐type classification (e.g. breast cancer subtypes, and leukemic cells vs peripheral blood mononuclear cells) at high accuracy (>94%). Our results suggest that multi‐ATOM could empower new strategies in large‐scale biophysical single‐cell analysis with applications in biology and enriching disease diagnostics. [Image: see text] |
format | Online Article Text |
id | pubmed-7065649 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | WILEY‐VCH Verlag GmbH & Co. KGaA |
record_format | MEDLINE/PubMed |
spelling | pubmed-70656492020-03-16 Multi‐ATOM: Ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution Lee, Kelvin C. M. Lau, Andy K. S. Tang, Anson H. L. Wang, Maolin Mok, Aaron T. Y. Chung, Bob M. F. Yan, Wenwei Shum, Ho C. Cheah, Kathryn S. E. Chan, Godfrey C. F. So, Hayden K. H. Wong, Kenneth K. Y. Tsia, Kevin K. J Biophotonics Full Articles A growing body of evidence has substantiated the significance of quantitative phase imaging (QPI) in enabling cost‐effective and label‐free cellular assays, which provides useful insights into understanding the biophysical properties of cells and their roles in cellular functions. However, available QPI modalities are limited by the loss of imaging resolution at high throughput and thus run short of sufficient statistical power at the single‐cell precision to define cell identities in a large and heterogeneous population of cells—hindering their utility in mainstream biomedicine and biology. Here we present a new QPI modality, coined multiplexed asymmetric‐detection time‐stretch optical microscopy (multi‐ATOM) that captures and processes quantitative label‐free single‐cell images at ultrahigh throughput without compromising subcellular resolution. We show that multi‐ATOM, based upon ultrafast phase‐gradient encoding, outperforms state‐of‐the‐art QPI in permitting robust phase retrieval at a QPI throughput of >10 000 cell/sec, bypassing the need for interferometry which inevitably compromises QPI quality under ultrafast operation. We employ multi‐ATOM for large‐scale, label‐free, multivariate, cell‐type classification (e.g. breast cancer subtypes, and leukemic cells vs peripheral blood mononuclear cells) at high accuracy (>94%). Our results suggest that multi‐ATOM could empower new strategies in large‐scale biophysical single‐cell analysis with applications in biology and enriching disease diagnostics. [Image: see text] WILEY‐VCH Verlag GmbH & Co. KGaA 2019-04-01 2019-07 /pmc/articles/PMC7065649/ /pubmed/30719868 http://dx.doi.org/10.1002/jbio.201800479 Text en © 2019 The Authors. Journal of Biophotonics published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Full Articles Lee, Kelvin C. M. Lau, Andy K. S. Tang, Anson H. L. Wang, Maolin Mok, Aaron T. Y. Chung, Bob M. F. Yan, Wenwei Shum, Ho C. Cheah, Kathryn S. E. Chan, Godfrey C. F. So, Hayden K. H. Wong, Kenneth K. Y. Tsia, Kevin K. Multi‐ATOM: Ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution |
title | Multi‐ATOM: Ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution |
title_full | Multi‐ATOM: Ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution |
title_fullStr | Multi‐ATOM: Ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution |
title_full_unstemmed | Multi‐ATOM: Ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution |
title_short | Multi‐ATOM: Ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution |
title_sort | multi‐atom: ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution |
topic | Full Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065649/ https://www.ncbi.nlm.nih.gov/pubmed/30719868 http://dx.doi.org/10.1002/jbio.201800479 |
work_keys_str_mv | AT leekelvincm multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution AT lauandyks multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution AT tangansonhl multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution AT wangmaolin multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution AT mokaaronty multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution AT chungbobmf multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution AT yanwenwei multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution AT shumhoc multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution AT cheahkathrynse multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution AT changodfreycf multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution AT sohaydenkh multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution AT wongkennethky multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution AT tsiakevink multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution |