Cargando…

Multi‐ATOM: Ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution

A growing body of evidence has substantiated the significance of quantitative phase imaging (QPI) in enabling cost‐effective and label‐free cellular assays, which provides useful insights into understanding the biophysical properties of cells and their roles in cellular functions. However, available...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Kelvin C. M., Lau, Andy K. S., Tang, Anson H. L., Wang, Maolin, Mok, Aaron T. Y., Chung, Bob M. F., Yan, Wenwei, Shum, Ho C., Cheah, Kathryn S. E., Chan, Godfrey C. F., So, Hayden K. H., Wong, Kenneth K. Y., Tsia, Kevin K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY‐VCH Verlag GmbH & Co. KGaA 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065649/
https://www.ncbi.nlm.nih.gov/pubmed/30719868
http://dx.doi.org/10.1002/jbio.201800479
_version_ 1783505098244096000
author Lee, Kelvin C. M.
Lau, Andy K. S.
Tang, Anson H. L.
Wang, Maolin
Mok, Aaron T. Y.
Chung, Bob M. F.
Yan, Wenwei
Shum, Ho C.
Cheah, Kathryn S. E.
Chan, Godfrey C. F.
So, Hayden K. H.
Wong, Kenneth K. Y.
Tsia, Kevin K.
author_facet Lee, Kelvin C. M.
Lau, Andy K. S.
Tang, Anson H. L.
Wang, Maolin
Mok, Aaron T. Y.
Chung, Bob M. F.
Yan, Wenwei
Shum, Ho C.
Cheah, Kathryn S. E.
Chan, Godfrey C. F.
So, Hayden K. H.
Wong, Kenneth K. Y.
Tsia, Kevin K.
author_sort Lee, Kelvin C. M.
collection PubMed
description A growing body of evidence has substantiated the significance of quantitative phase imaging (QPI) in enabling cost‐effective and label‐free cellular assays, which provides useful insights into understanding the biophysical properties of cells and their roles in cellular functions. However, available QPI modalities are limited by the loss of imaging resolution at high throughput and thus run short of sufficient statistical power at the single‐cell precision to define cell identities in a large and heterogeneous population of cells—hindering their utility in mainstream biomedicine and biology. Here we present a new QPI modality, coined multiplexed asymmetric‐detection time‐stretch optical microscopy (multi‐ATOM) that captures and processes quantitative label‐free single‐cell images at ultrahigh throughput without compromising subcellular resolution. We show that multi‐ATOM, based upon ultrafast phase‐gradient encoding, outperforms state‐of‐the‐art QPI in permitting robust phase retrieval at a QPI throughput of >10 000 cell/sec, bypassing the need for interferometry which inevitably compromises QPI quality under ultrafast operation. We employ multi‐ATOM for large‐scale, label‐free, multivariate, cell‐type classification (e.g. breast cancer subtypes, and leukemic cells vs peripheral blood mononuclear cells) at high accuracy (>94%). Our results suggest that multi‐ATOM could empower new strategies in large‐scale biophysical single‐cell analysis with applications in biology and enriching disease diagnostics. [Image: see text]
format Online
Article
Text
id pubmed-7065649
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher WILEY‐VCH Verlag GmbH & Co. KGaA
record_format MEDLINE/PubMed
spelling pubmed-70656492020-03-16 Multi‐ATOM: Ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution Lee, Kelvin C. M. Lau, Andy K. S. Tang, Anson H. L. Wang, Maolin Mok, Aaron T. Y. Chung, Bob M. F. Yan, Wenwei Shum, Ho C. Cheah, Kathryn S. E. Chan, Godfrey C. F. So, Hayden K. H. Wong, Kenneth K. Y. Tsia, Kevin K. J Biophotonics Full Articles A growing body of evidence has substantiated the significance of quantitative phase imaging (QPI) in enabling cost‐effective and label‐free cellular assays, which provides useful insights into understanding the biophysical properties of cells and their roles in cellular functions. However, available QPI modalities are limited by the loss of imaging resolution at high throughput and thus run short of sufficient statistical power at the single‐cell precision to define cell identities in a large and heterogeneous population of cells—hindering their utility in mainstream biomedicine and biology. Here we present a new QPI modality, coined multiplexed asymmetric‐detection time‐stretch optical microscopy (multi‐ATOM) that captures and processes quantitative label‐free single‐cell images at ultrahigh throughput without compromising subcellular resolution. We show that multi‐ATOM, based upon ultrafast phase‐gradient encoding, outperforms state‐of‐the‐art QPI in permitting robust phase retrieval at a QPI throughput of >10 000 cell/sec, bypassing the need for interferometry which inevitably compromises QPI quality under ultrafast operation. We employ multi‐ATOM for large‐scale, label‐free, multivariate, cell‐type classification (e.g. breast cancer subtypes, and leukemic cells vs peripheral blood mononuclear cells) at high accuracy (>94%). Our results suggest that multi‐ATOM could empower new strategies in large‐scale biophysical single‐cell analysis with applications in biology and enriching disease diagnostics. [Image: see text] WILEY‐VCH Verlag GmbH & Co. KGaA 2019-04-01 2019-07 /pmc/articles/PMC7065649/ /pubmed/30719868 http://dx.doi.org/10.1002/jbio.201800479 Text en © 2019 The Authors. Journal of Biophotonics published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Full Articles
Lee, Kelvin C. M.
Lau, Andy K. S.
Tang, Anson H. L.
Wang, Maolin
Mok, Aaron T. Y.
Chung, Bob M. F.
Yan, Wenwei
Shum, Ho C.
Cheah, Kathryn S. E.
Chan, Godfrey C. F.
So, Hayden K. H.
Wong, Kenneth K. Y.
Tsia, Kevin K.
Multi‐ATOM: Ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution
title Multi‐ATOM: Ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution
title_full Multi‐ATOM: Ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution
title_fullStr Multi‐ATOM: Ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution
title_full_unstemmed Multi‐ATOM: Ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution
title_short Multi‐ATOM: Ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution
title_sort multi‐atom: ultrahigh‐throughput single‐cell quantitative phase imaging with subcellular resolution
topic Full Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065649/
https://www.ncbi.nlm.nih.gov/pubmed/30719868
http://dx.doi.org/10.1002/jbio.201800479
work_keys_str_mv AT leekelvincm multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution
AT lauandyks multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution
AT tangansonhl multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution
AT wangmaolin multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution
AT mokaaronty multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution
AT chungbobmf multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution
AT yanwenwei multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution
AT shumhoc multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution
AT cheahkathrynse multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution
AT changodfreycf multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution
AT sohaydenkh multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution
AT wongkennethky multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution
AT tsiakevink multiatomultrahighthroughputsinglecellquantitativephaseimagingwithsubcellularresolution