Cargando…
Bladder tissue characterization using probe‐based Raman spectroscopy: Evaluation of tissue heterogeneity and influence on the model prediction
Existing approaches for early‐stage bladder tumor diagnosis largely depend on invasive and time‐consuming procedures, resulting in hospitalization, bleeding, bladder perforation, infection and other health risks for the patient. The reduction of current risk factors, while maintaining or even improv...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
WILEY‐VCH Verlag GmbH & Co. KGaA
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065650/ https://www.ncbi.nlm.nih.gov/pubmed/31617683 http://dx.doi.org/10.1002/jbio.201960025 |
_version_ | 1783505098496802816 |
---|---|
author | Cordero, Eliana Rüger, Jan Marti, Dominik Mondol, Abdullah S. Hasselager, Thomas Mogensen, Karin Hermann, Gregers G. Popp, Jürgen Schie, Iwan W. |
author_facet | Cordero, Eliana Rüger, Jan Marti, Dominik Mondol, Abdullah S. Hasselager, Thomas Mogensen, Karin Hermann, Gregers G. Popp, Jürgen Schie, Iwan W. |
author_sort | Cordero, Eliana |
collection | PubMed |
description | Existing approaches for early‐stage bladder tumor diagnosis largely depend on invasive and time‐consuming procedures, resulting in hospitalization, bleeding, bladder perforation, infection and other health risks for the patient. The reduction of current risk factors, while maintaining or even improving the diagnostic precision, is an underlying factor in clinical instrumentation research. For example, for clinic surveillance of patients with a history of noninvasive bladder tumors real‐time tumor diagnosis can enable immediate laser‐based removal of tumors using flexible cystoscopes in the outpatient clinic. Therefore, novel diagnostic modalities are required that can provide real‐time in vivo tumor diagnosis. Raman spectroscopy provides biochemical information of tissue samples ex vivo and in vivo and without the need for complicated sample preparation and staining procedures. For the past decade there has been a rise in applications to diagnose and characterize early cancer in different organs, such as in head and neck, colon and stomach, but also different pathologies, for example, inflammation and atherosclerotic plaques. Bladder pathology has also been studied but only with little attention to aspects that can influence the diagnosis, such as tissue heterogeneity, data preprocessing and model development. The present study presents a clinical investigative study on bladder biopsies to characterize the tumor grading ex vivo, using a compact fiber probe‐based imaging Raman system, as a crucial step towards in vivo Raman endoscopy. Furthermore, this study presents an evaluation of the tissue heterogeneity of highly fluorescent bladder tissues, and the multivariate statistical analysis for discrimination between nontumor tissue, and low‐ and high‐grade tumor. [Image: see text] |
format | Online Article Text |
id | pubmed-7065650 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | WILEY‐VCH Verlag GmbH & Co. KGaA |
record_format | MEDLINE/PubMed |
spelling | pubmed-70656502020-03-16 Bladder tissue characterization using probe‐based Raman spectroscopy: Evaluation of tissue heterogeneity and influence on the model prediction Cordero, Eliana Rüger, Jan Marti, Dominik Mondol, Abdullah S. Hasselager, Thomas Mogensen, Karin Hermann, Gregers G. Popp, Jürgen Schie, Iwan W. J Biophotonics Full Articles Existing approaches for early‐stage bladder tumor diagnosis largely depend on invasive and time‐consuming procedures, resulting in hospitalization, bleeding, bladder perforation, infection and other health risks for the patient. The reduction of current risk factors, while maintaining or even improving the diagnostic precision, is an underlying factor in clinical instrumentation research. For example, for clinic surveillance of patients with a history of noninvasive bladder tumors real‐time tumor diagnosis can enable immediate laser‐based removal of tumors using flexible cystoscopes in the outpatient clinic. Therefore, novel diagnostic modalities are required that can provide real‐time in vivo tumor diagnosis. Raman spectroscopy provides biochemical information of tissue samples ex vivo and in vivo and without the need for complicated sample preparation and staining procedures. For the past decade there has been a rise in applications to diagnose and characterize early cancer in different organs, such as in head and neck, colon and stomach, but also different pathologies, for example, inflammation and atherosclerotic plaques. Bladder pathology has also been studied but only with little attention to aspects that can influence the diagnosis, such as tissue heterogeneity, data preprocessing and model development. The present study presents a clinical investigative study on bladder biopsies to characterize the tumor grading ex vivo, using a compact fiber probe‐based imaging Raman system, as a crucial step towards in vivo Raman endoscopy. Furthermore, this study presents an evaluation of the tissue heterogeneity of highly fluorescent bladder tissues, and the multivariate statistical analysis for discrimination between nontumor tissue, and low‐ and high‐grade tumor. [Image: see text] WILEY‐VCH Verlag GmbH & Co. KGaA 2019-12-02 2020-02 /pmc/articles/PMC7065650/ /pubmed/31617683 http://dx.doi.org/10.1002/jbio.201960025 Text en © 2019 The Authors. Journal of Biophotonics published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Articles Cordero, Eliana Rüger, Jan Marti, Dominik Mondol, Abdullah S. Hasselager, Thomas Mogensen, Karin Hermann, Gregers G. Popp, Jürgen Schie, Iwan W. Bladder tissue characterization using probe‐based Raman spectroscopy: Evaluation of tissue heterogeneity and influence on the model prediction |
title | Bladder tissue characterization using probe‐based Raman spectroscopy: Evaluation of tissue heterogeneity and influence on the model prediction |
title_full | Bladder tissue characterization using probe‐based Raman spectroscopy: Evaluation of tissue heterogeneity and influence on the model prediction |
title_fullStr | Bladder tissue characterization using probe‐based Raman spectroscopy: Evaluation of tissue heterogeneity and influence on the model prediction |
title_full_unstemmed | Bladder tissue characterization using probe‐based Raman spectroscopy: Evaluation of tissue heterogeneity and influence on the model prediction |
title_short | Bladder tissue characterization using probe‐based Raman spectroscopy: Evaluation of tissue heterogeneity and influence on the model prediction |
title_sort | bladder tissue characterization using probe‐based raman spectroscopy: evaluation of tissue heterogeneity and influence on the model prediction |
topic | Full Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065650/ https://www.ncbi.nlm.nih.gov/pubmed/31617683 http://dx.doi.org/10.1002/jbio.201960025 |
work_keys_str_mv | AT corderoeliana bladdertissuecharacterizationusingprobebasedramanspectroscopyevaluationoftissueheterogeneityandinfluenceonthemodelprediction AT rugerjan bladdertissuecharacterizationusingprobebasedramanspectroscopyevaluationoftissueheterogeneityandinfluenceonthemodelprediction AT martidominik bladdertissuecharacterizationusingprobebasedramanspectroscopyevaluationoftissueheterogeneityandinfluenceonthemodelprediction AT mondolabdullahs bladdertissuecharacterizationusingprobebasedramanspectroscopyevaluationoftissueheterogeneityandinfluenceonthemodelprediction AT hasselagerthomas bladdertissuecharacterizationusingprobebasedramanspectroscopyevaluationoftissueheterogeneityandinfluenceonthemodelprediction AT mogensenkarin bladdertissuecharacterizationusingprobebasedramanspectroscopyevaluationoftissueheterogeneityandinfluenceonthemodelprediction AT hermanngregersg bladdertissuecharacterizationusingprobebasedramanspectroscopyevaluationoftissueheterogeneityandinfluenceonthemodelprediction AT poppjurgen bladdertissuecharacterizationusingprobebasedramanspectroscopyevaluationoftissueheterogeneityandinfluenceonthemodelprediction AT schieiwanw bladdertissuecharacterizationusingprobebasedramanspectroscopyevaluationoftissueheterogeneityandinfluenceonthemodelprediction |