Cargando…

Alternative splice variants of rhomboid proteins: Comparative analysis of database entries for select model organisms and validation of functional potential

Background: Rhomboid serine proteases are present across many species and are often encoded in each species by more than one predicted gene. Based on protein sequence comparisons, rhomboids can be differentiated into groups - secretases, presenilin-like associated rhomboid-like (PARL) proteases, iRh...

Descripción completa

Detalles Bibliográficos
Autores principales: Powles, Joshua, Ko, Kenton
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065720/
https://www.ncbi.nlm.nih.gov/pubmed/32201561
http://dx.doi.org/10.12688/f1000research.13383.2
_version_ 1783505107343638528
author Powles, Joshua
Ko, Kenton
author_facet Powles, Joshua
Ko, Kenton
author_sort Powles, Joshua
collection PubMed
description Background: Rhomboid serine proteases are present across many species and are often encoded in each species by more than one predicted gene. Based on protein sequence comparisons, rhomboids can be differentiated into groups - secretases, presenilin-like associated rhomboid-like (PARL) proteases, iRhoms, and “inactive” rhomboid proteins. Although these rhomboid groups are distinct, the different types can operate simultaneously. Studies in Arabidopsis showed that the number of rhomboid proteins working simultaneously can be further diversified by alternative splicing. This phenomenon was confirmed for the Arabidopsis plastid rhomboid proteins At1g25290 and At1g74130. Although alternative splicing was determined to be a significant mechanism for diversifying these two Arabidopsis plastid rhomboids, there has yet to be an assessment as to whether this mechanism extends to other rhomboids and to other species.  Methods: We thus conducted a comparative analysis of select databases to determine if the alternative splicing mechanism observed for the two Arabidopsis plastid rhomboids was utilized in other species to expand the repertoire of rhomboid proteins. To help verify the in silico observations, select splice variants from different groups were tested for activity using transgenic- and additive-based assays. These assays aimed to uncover evidence that the selected splice variants display capacities to influence processes like antimicrobial sensitivity. Results: A comparison of database entries of six widely used eukaryotic experimental models  (human, mouse, Arabidopsis, Drosophila, nematode, and yeast) revealed robust usage of alternative splicing to diversify rhomboid protein structure across the various motifs or regions, especially in human, mouse and Arabidopsis. Subsequent validation studies uncover evidence that the splice variants selected for testing displayed functionality in the different activity assays. Conclusions: The combined results support the hypothesis that alternative splicing is likely used to diversify and expand rhomboid protein functionality, and this potentially occurred across the various motifs or regions of the protein.
format Online
Article
Text
id pubmed-7065720
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher F1000 Research Limited
record_format MEDLINE/PubMed
spelling pubmed-70657202020-03-20 Alternative splice variants of rhomboid proteins: Comparative analysis of database entries for select model organisms and validation of functional potential Powles, Joshua Ko, Kenton F1000Res Research Article Background: Rhomboid serine proteases are present across many species and are often encoded in each species by more than one predicted gene. Based on protein sequence comparisons, rhomboids can be differentiated into groups - secretases, presenilin-like associated rhomboid-like (PARL) proteases, iRhoms, and “inactive” rhomboid proteins. Although these rhomboid groups are distinct, the different types can operate simultaneously. Studies in Arabidopsis showed that the number of rhomboid proteins working simultaneously can be further diversified by alternative splicing. This phenomenon was confirmed for the Arabidopsis plastid rhomboid proteins At1g25290 and At1g74130. Although alternative splicing was determined to be a significant mechanism for diversifying these two Arabidopsis plastid rhomboids, there has yet to be an assessment as to whether this mechanism extends to other rhomboids and to other species.  Methods: We thus conducted a comparative analysis of select databases to determine if the alternative splicing mechanism observed for the two Arabidopsis plastid rhomboids was utilized in other species to expand the repertoire of rhomboid proteins. To help verify the in silico observations, select splice variants from different groups were tested for activity using transgenic- and additive-based assays. These assays aimed to uncover evidence that the selected splice variants display capacities to influence processes like antimicrobial sensitivity. Results: A comparison of database entries of six widely used eukaryotic experimental models  (human, mouse, Arabidopsis, Drosophila, nematode, and yeast) revealed robust usage of alternative splicing to diversify rhomboid protein structure across the various motifs or regions, especially in human, mouse and Arabidopsis. Subsequent validation studies uncover evidence that the splice variants selected for testing displayed functionality in the different activity assays. Conclusions: The combined results support the hypothesis that alternative splicing is likely used to diversify and expand rhomboid protein functionality, and this potentially occurred across the various motifs or regions of the protein. F1000 Research Limited 2018-05-31 /pmc/articles/PMC7065720/ /pubmed/32201561 http://dx.doi.org/10.12688/f1000research.13383.2 Text en Copyright: © 2018 Powles J and Ko K http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Powles, Joshua
Ko, Kenton
Alternative splice variants of rhomboid proteins: Comparative analysis of database entries for select model organisms and validation of functional potential
title Alternative splice variants of rhomboid proteins: Comparative analysis of database entries for select model organisms and validation of functional potential
title_full Alternative splice variants of rhomboid proteins: Comparative analysis of database entries for select model organisms and validation of functional potential
title_fullStr Alternative splice variants of rhomboid proteins: Comparative analysis of database entries for select model organisms and validation of functional potential
title_full_unstemmed Alternative splice variants of rhomboid proteins: Comparative analysis of database entries for select model organisms and validation of functional potential
title_short Alternative splice variants of rhomboid proteins: Comparative analysis of database entries for select model organisms and validation of functional potential
title_sort alternative splice variants of rhomboid proteins: comparative analysis of database entries for select model organisms and validation of functional potential
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065720/
https://www.ncbi.nlm.nih.gov/pubmed/32201561
http://dx.doi.org/10.12688/f1000research.13383.2
work_keys_str_mv AT powlesjoshua alternativesplicevariantsofrhomboidproteinscomparativeanalysisofdatabaseentriesforselectmodelorganismsandvalidationoffunctionalpotential
AT kokenton alternativesplicevariantsofrhomboidproteinscomparativeanalysisofdatabaseentriesforselectmodelorganismsandvalidationoffunctionalpotential