Cargando…
The role of fluctuations in determining cellular network thermodynamics
The steady state distributions of phenotypic responses within an isogenic population of cells result from both deterministic and stochastic characteristics of biochemical networks. A biochemical network can be characterized by a multidimensional potential landscape based on the distribution of respo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065797/ https://www.ncbi.nlm.nih.gov/pubmed/32160263 http://dx.doi.org/10.1371/journal.pone.0230076 |
_version_ | 1783505122894020608 |
---|---|
author | Hubbard, Joseph B. Halter, Michael Sarkar, Swarnavo Plant, Anne L. |
author_facet | Hubbard, Joseph B. Halter, Michael Sarkar, Swarnavo Plant, Anne L. |
author_sort | Hubbard, Joseph B. |
collection | PubMed |
description | The steady state distributions of phenotypic responses within an isogenic population of cells result from both deterministic and stochastic characteristics of biochemical networks. A biochemical network can be characterized by a multidimensional potential landscape based on the distribution of responses and a diffusion matrix of the correlated dynamic fluctuations between N-numbers of intracellular network variables. In this work, we develop a thermodynamic description of biological networks at the level of microscopic interactions between network variables. The Boltzmann H-function defines the rate of free energy dissipation of a network system and provides a framework for determining the heat associated with the nonequilibrium steady state and its network components. The magnitudes of the landscape gradients and the dynamic correlated fluctuations of network variables are experimentally accessible. We describe the use of Fokker-Planck dynamics to calculate housekeeping heat from the experimental data by a method that we refer to as Thermo-FP. The method provides insight into the composition of the network and the relative thermodynamic contributions from network components. We surmise that these thermodynamic quantities allow determination of the relative importance of network components to overall network control. We conjecture that there is an upper limit to the rate of dissipative heat produced by a biological system that is associated with system size or modularity, and we show that the dissipative heat has a lower bound. |
format | Online Article Text |
id | pubmed-7065797 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-70657972020-03-23 The role of fluctuations in determining cellular network thermodynamics Hubbard, Joseph B. Halter, Michael Sarkar, Swarnavo Plant, Anne L. PLoS One Research Article The steady state distributions of phenotypic responses within an isogenic population of cells result from both deterministic and stochastic characteristics of biochemical networks. A biochemical network can be characterized by a multidimensional potential landscape based on the distribution of responses and a diffusion matrix of the correlated dynamic fluctuations between N-numbers of intracellular network variables. In this work, we develop a thermodynamic description of biological networks at the level of microscopic interactions between network variables. The Boltzmann H-function defines the rate of free energy dissipation of a network system and provides a framework for determining the heat associated with the nonequilibrium steady state and its network components. The magnitudes of the landscape gradients and the dynamic correlated fluctuations of network variables are experimentally accessible. We describe the use of Fokker-Planck dynamics to calculate housekeeping heat from the experimental data by a method that we refer to as Thermo-FP. The method provides insight into the composition of the network and the relative thermodynamic contributions from network components. We surmise that these thermodynamic quantities allow determination of the relative importance of network components to overall network control. We conjecture that there is an upper limit to the rate of dissipative heat produced by a biological system that is associated with system size or modularity, and we show that the dissipative heat has a lower bound. Public Library of Science 2020-03-11 /pmc/articles/PMC7065797/ /pubmed/32160263 http://dx.doi.org/10.1371/journal.pone.0230076 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Hubbard, Joseph B. Halter, Michael Sarkar, Swarnavo Plant, Anne L. The role of fluctuations in determining cellular network thermodynamics |
title | The role of fluctuations in determining cellular network thermodynamics |
title_full | The role of fluctuations in determining cellular network thermodynamics |
title_fullStr | The role of fluctuations in determining cellular network thermodynamics |
title_full_unstemmed | The role of fluctuations in determining cellular network thermodynamics |
title_short | The role of fluctuations in determining cellular network thermodynamics |
title_sort | role of fluctuations in determining cellular network thermodynamics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065797/ https://www.ncbi.nlm.nih.gov/pubmed/32160263 http://dx.doi.org/10.1371/journal.pone.0230076 |
work_keys_str_mv | AT hubbardjosephb theroleoffluctuationsindeterminingcellularnetworkthermodynamics AT haltermichael theroleoffluctuationsindeterminingcellularnetworkthermodynamics AT sarkarswarnavo theroleoffluctuationsindeterminingcellularnetworkthermodynamics AT plantannel theroleoffluctuationsindeterminingcellularnetworkthermodynamics AT hubbardjosephb roleoffluctuationsindeterminingcellularnetworkthermodynamics AT haltermichael roleoffluctuationsindeterminingcellularnetworkthermodynamics AT sarkarswarnavo roleoffluctuationsindeterminingcellularnetworkthermodynamics AT plantannel roleoffluctuationsindeterminingcellularnetworkthermodynamics |