Cargando…
Stable Matching with Uncertain Linear Preferences
We consider the two-sided stable matching setting in which there may be uncertainty about the agents’ preferences due to limited information or communication. We consider three models of uncertainty: (1) lottery model—for each agent, there is a probability distribution over linear preferences, (2) c...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066306/ https://www.ncbi.nlm.nih.gov/pubmed/32214575 http://dx.doi.org/10.1007/s00453-019-00650-0 |
Sumario: | We consider the two-sided stable matching setting in which there may be uncertainty about the agents’ preferences due to limited information or communication. We consider three models of uncertainty: (1) lottery model—for each agent, there is a probability distribution over linear preferences, (2) compact indifference model—for each agent, a weak preference order is specified and each linear order compatible with the weak order is equally likely and (3) joint probability model—there is a lottery over preference profiles. For each of the models, we study the computational complexity of computing the stability probability of a given matching as well as finding a matching with the highest probability of being stable. We also examine more restricted problems such as deciding whether a certainly stable matching exists. We find a rich complexity landscape for these problems, indicating that the form uncertainty takes is significant. |
---|