Cargando…

Delineation of Homeostatic Immune Signatures Defining Viremic Non-progression in HIV-1 Infection

Viremic non-progressors (VNPs), a distinct group of HIV-1-infected individuals, exhibit no signs of disease progression and maintain persistently elevated CD4+ T cell counts for several years despite high viral replication. Comprehensive characterization of homeostatic cellular immune signatures in...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Amit Kumar, Salwe, Sukeshani, Padwal, Varsha, Velhal, Shilpa, Sutar, Jyoti, Bhowmick, Shilpa, Mukherjee, Srabani, Nagar, Vidya, Patil, Priya, Patel, Vainav
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066316/
https://www.ncbi.nlm.nih.gov/pubmed/32194543
http://dx.doi.org/10.3389/fimmu.2020.00182
Descripción
Sumario:Viremic non-progressors (VNPs), a distinct group of HIV-1-infected individuals, exhibit no signs of disease progression and maintain persistently elevated CD4+ T cell counts for several years despite high viral replication. Comprehensive characterization of homeostatic cellular immune signatures in VNPs can provide unique insights into mechanisms responsible for coping with viral pathogenesis as well as identifying strategies for immune restoration under clinically relevant settings such as antiretroviral therapy (ART) failure. We report a novel homeostatic signature in VNPs, the preservation of the central memory CD4+ T cell (CD4+ T(CM)) compartment. In addition, CD4+ T(CM) preservation was supported by ongoing interleukin-7 (IL-7)-mediated thymic repopulation of naive CD4+ T cells leading to intact CD4+ T cell homeostasis in VNPs. Regulatory T cell (Treg) expansion was found to be a function of preserved CD4+ T cell count and CD4+ T cell activation independent of disease status. However, in light of continual depletion of CD4+ T cell count in progressors but not in VNPs, Tregs appear to be involved in lack of disease progression despite high viremia. In addition to these homeostatic mechanisms resisting CD4+ T cell depletion in VNPs, a relative diminution of terminally differentiated effector subset was observed exclusively in these individuals that might ameliorate consequences of high viral replication. VNPs also shared signatures of impaired CD8+ T cell cytotoxic function with progressors evidenced by increased exhaustion (PD-1 upregulation) and CD127 (IL-7Rα) downregulation contributing to persistent viremia. Thus, the homeostatic immune signatures reported in our study suggest a complex multifactorial mechanism accounting for non-progression in VNPs.