Cargando…
Lipopolysaccharide exposure during late embryogenesis triggers and drives Alzheimer‐like behavioral and neuropathological changes in CD‐1 mice
INTRODUCTION: Infections could contribute to Alzheimer's disease (AD) neuropathology in human. However, experimental evidence for a causal relationship between infections during the prenatal phase and the onset of AD is lacking. METHODS: CD‐1 mothers were intraperitoneally received lipopolysacc...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066339/ https://www.ncbi.nlm.nih.gov/pubmed/31997558 http://dx.doi.org/10.1002/brb3.1546 |
_version_ | 1783505230226259968 |
---|---|
author | Wang, Fang Zhang, Zhe‐Zhe Cao, Lei Yang, Qi‐Gang Lu, Qing‐Fang Chen, Gui‐Hai |
author_facet | Wang, Fang Zhang, Zhe‐Zhe Cao, Lei Yang, Qi‐Gang Lu, Qing‐Fang Chen, Gui‐Hai |
author_sort | Wang, Fang |
collection | PubMed |
description | INTRODUCTION: Infections could contribute to Alzheimer's disease (AD) neuropathology in human. However, experimental evidence for a causal relationship between infections during the prenatal phase and the onset of AD is lacking. METHODS: CD‐1 mothers were intraperitoneally received lipopolysaccharide (LPS) with two doses (25 and 50 μg/kg) or normal saline every day during gestational days 15–17. A battery of behavioral tasks was used to assess the species‐typical behavior, sensorimotor capacity, anxiety, locomotor activity, recognition memory, and spatial learning and memory in 1‐, 6‐, 12‐, 18‐, and 22‐month‐old offspring mice. An immunohistochemical technology was performed to detect neuropathological indicators consisting of amyloid‐β (Aβ), phosphorylated tau (p‐tau), and glial fibrillary acidic protein (GFAP) in the hippocampus. RESULTS: Compared to the same‐aged controls, LPS‐treated offspring had similar behavioral abilities and the levels of Aβ42, p‐tau, and GFAP at 1 and 6 months old. From 12 months onward, LPS‐treated offspring gradually showed decreased species‐typical behavior, sensorimotor ability, locomotor activity, recognition memory, and spatial learning and memory, and increased anxieties and the levels of Aβ42, p‐tau, and GFAP relative to the same‐aged controls. Moreover, this damage effect (especially cognitive decline) persistently progressed onwards. The changes in these neuropathological indicators significantly correlated with impaired spatial learning and memory. CONCLUSIONS: Prenatal exposure to low doses of LPS caused AD‐related features including behavioral and neuropathological changes from midlife to senectitude. |
format | Online Article Text |
id | pubmed-7066339 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-70663392020-03-18 Lipopolysaccharide exposure during late embryogenesis triggers and drives Alzheimer‐like behavioral and neuropathological changes in CD‐1 mice Wang, Fang Zhang, Zhe‐Zhe Cao, Lei Yang, Qi‐Gang Lu, Qing‐Fang Chen, Gui‐Hai Brain Behav Original Research INTRODUCTION: Infections could contribute to Alzheimer's disease (AD) neuropathology in human. However, experimental evidence for a causal relationship between infections during the prenatal phase and the onset of AD is lacking. METHODS: CD‐1 mothers were intraperitoneally received lipopolysaccharide (LPS) with two doses (25 and 50 μg/kg) or normal saline every day during gestational days 15–17. A battery of behavioral tasks was used to assess the species‐typical behavior, sensorimotor capacity, anxiety, locomotor activity, recognition memory, and spatial learning and memory in 1‐, 6‐, 12‐, 18‐, and 22‐month‐old offspring mice. An immunohistochemical technology was performed to detect neuropathological indicators consisting of amyloid‐β (Aβ), phosphorylated tau (p‐tau), and glial fibrillary acidic protein (GFAP) in the hippocampus. RESULTS: Compared to the same‐aged controls, LPS‐treated offspring had similar behavioral abilities and the levels of Aβ42, p‐tau, and GFAP at 1 and 6 months old. From 12 months onward, LPS‐treated offspring gradually showed decreased species‐typical behavior, sensorimotor ability, locomotor activity, recognition memory, and spatial learning and memory, and increased anxieties and the levels of Aβ42, p‐tau, and GFAP relative to the same‐aged controls. Moreover, this damage effect (especially cognitive decline) persistently progressed onwards. The changes in these neuropathological indicators significantly correlated with impaired spatial learning and memory. CONCLUSIONS: Prenatal exposure to low doses of LPS caused AD‐related features including behavioral and neuropathological changes from midlife to senectitude. John Wiley and Sons Inc. 2020-01-30 /pmc/articles/PMC7066339/ /pubmed/31997558 http://dx.doi.org/10.1002/brb3.1546 Text en © 2020 The Authors. Brain and Behavior published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Wang, Fang Zhang, Zhe‐Zhe Cao, Lei Yang, Qi‐Gang Lu, Qing‐Fang Chen, Gui‐Hai Lipopolysaccharide exposure during late embryogenesis triggers and drives Alzheimer‐like behavioral and neuropathological changes in CD‐1 mice |
title | Lipopolysaccharide exposure during late embryogenesis triggers and drives Alzheimer‐like behavioral and neuropathological changes in CD‐1 mice |
title_full | Lipopolysaccharide exposure during late embryogenesis triggers and drives Alzheimer‐like behavioral and neuropathological changes in CD‐1 mice |
title_fullStr | Lipopolysaccharide exposure during late embryogenesis triggers and drives Alzheimer‐like behavioral and neuropathological changes in CD‐1 mice |
title_full_unstemmed | Lipopolysaccharide exposure during late embryogenesis triggers and drives Alzheimer‐like behavioral and neuropathological changes in CD‐1 mice |
title_short | Lipopolysaccharide exposure during late embryogenesis triggers and drives Alzheimer‐like behavioral and neuropathological changes in CD‐1 mice |
title_sort | lipopolysaccharide exposure during late embryogenesis triggers and drives alzheimer‐like behavioral and neuropathological changes in cd‐1 mice |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066339/ https://www.ncbi.nlm.nih.gov/pubmed/31997558 http://dx.doi.org/10.1002/brb3.1546 |
work_keys_str_mv | AT wangfang lipopolysaccharideexposureduringlateembryogenesistriggersanddrivesalzheimerlikebehavioralandneuropathologicalchangesincd1mice AT zhangzhezhe lipopolysaccharideexposureduringlateembryogenesistriggersanddrivesalzheimerlikebehavioralandneuropathologicalchangesincd1mice AT caolei lipopolysaccharideexposureduringlateembryogenesistriggersanddrivesalzheimerlikebehavioralandneuropathologicalchangesincd1mice AT yangqigang lipopolysaccharideexposureduringlateembryogenesistriggersanddrivesalzheimerlikebehavioralandneuropathologicalchangesincd1mice AT luqingfang lipopolysaccharideexposureduringlateembryogenesistriggersanddrivesalzheimerlikebehavioralandneuropathologicalchangesincd1mice AT chenguihai lipopolysaccharideexposureduringlateembryogenesistriggersanddrivesalzheimerlikebehavioralandneuropathologicalchangesincd1mice |